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Abstract 32 

The pandemic of COVID-19, a disease caused by a novel coronavirus (CoV), SARS-CoV-2, is causing 33 

substantial morbidity and mortality. Older age and presence of diabetes mellitus, hypertension, and 34 

obesity significantly increases the risk for hospitalization and death in COVID-19 patients. In this 35 

Perspective, informed by the studies on severe acute respiratory syndrome, SARS-CoV, and Middle East 36 

respiratory syndrome, MERS-CoV, and the current literature on SARS-CoV-2, we discuss potential 37 

mechanisms by which diabetes modulates the host-viral interactions and host-immune responses. We 38 

hope to highlight gaps in knowledge that require further studies pertinent to COVID-19 in patients with 39 

diabetes. 40 

Introduction 41 

Coronaviruses (CoV) are enveloped viruses with a single-stranded, positive-sense RNA genome 42 

known to cause respiratory infections in humans (7, 38). In general, in most immunocompetent 43 

individuals, human CoV infection leads to mild upper respiratory infection. However, two highly 44 

pathogenic CoV have resulted in outbreaks of severe acute respiratory syndrome (SARS) in 2003 in 45 

Guangdong province, China and Middle East respiratory syndrome (MERS) in Middle Eastern countries 46 

a decade later. SARS-CoV and MERS-CoV were identified to cause SARS and MERS respectively (11, 47 

51, 55). In December 2019, a novel coronavirus SARS-CoV-2 was identified as the pathogen causing 48 

coronavirus disease of 2019 (COVID-19) in Wuhan, China (11, 51, 55). On March 11th, 2020, COVID-19 49 

was declared a pandemic by the World Health Organization. As of March 27th, 2020, there have been a 50 

total of 103,942 confirmed cases with 1689 deaths in the United States (1). Globally, 27,324 deaths have 51 

been reported among 595,800 confirmed cases (1). 52 

Individuals with diabetes mellitus (DM), hypertension, and severe obesity (BMI≥ 40 kg/m2) are 53 

more likely to be infected and are at a higher risk for complications and death from COVID-19 (16, 30, 54 

32, 48, 50, 52, 56). Interestingly, there was similarly an increased risk for SARS and MERS in individuals 55 

with DM. In the United States, 34.2 million or 10.5% of the total population have DM (32). Among those 56 

aged 65y or older, a population at higher risk for death from COVID-19, 26.8% have DM (32). 57 

Hypertension and severe obesity are present in 68.4% and 15.5% of individuals diagnosed with DM, 58 

respectively. Over a period of months, a substantial portion of the US population will be infected by 59 

SARS-CoV-2 (12). While a significant number will remain asymptomatic and be able to transmit the 60 

virus, the estimated proportion of symptomatic individuals requiring hospitalization increases with age 61 

(12). In individuals older than 60y, that proportion ranges from 17-27%. Furthermore, in this older group, 62 

the percentage of hospitalized patients requiring ICU care is 27-71% with an infection fatality rate (IFR) 63 

ranging from 2.2-9.3% (12). While these estimates are preliminary and likely to change, considering the 64 
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prevalence of DM, hypertension, and severe obesity in the US and the substantial increased risk for 65 

COVID-19 and its complications in patients with these conditions, it is likely the pandemic has the 66 

potential to cause significant mortality and morbidity. Specialists and health care providers will be 67 

providing clinical care to many patients with COVID-19 in both inpatient, outpatient, and telehealth 68 

settings. Increased awareness of the clinical features, pathophysiology, and potential mechanisms that 69 

increase the risk is needed to provide better care and spur new investigations, both basic and clinical, to 70 

better understand COVID-19 in patients with diabetes. 71 

Clinical Features and Natural Course of COVID-19 72 

The median age of SARS-CoV-2-infected patients is in the range of 47-56 years, males comprise 73 

more than half of the cases, the average incubation period is 5.2 days, and 98% of those who develop 74 

symptoms will do so within 11.5 days (5, 16, 19, 22, 42). The clinical manifestations of COVID-19 vary 75 

and include the asymptomatic carrier status, acute respiratory disease (ARD), and pneumonia (16, 42). 76 

The prevalence of asymptomatic cases is significant (20-86% of all infections) and are defined as 77 

individuals with positive viral nucleic acid tests, but without any COVID-19 symptoms (3, 4, 23, 29, 57). 78 

Transmission rates and respiratory viral load in asymptomatic carriers are similar to symptomatic patients 79 

(23, 57), partially explaining the rapid spread of SARS-CoV-2. In addition to a laboratory-confirmed 80 

COVID-19 diagnosis, patients with ARD manifest with fever, fatigue, respiratory (cough, dyspnea) or 81 

gastrointestinal (nausea, diarrhea, vomiting) symptoms, and no significant abnormalities on chest imaging 82 

(16, 42). Patients with pneumonia have respiratory symptoms and positive findings in chest imaging. 83 

Severe pneumonia can present as acute respiratory distress syndrome (ARDS) leading to severe hypoxia, 84 

respiratory failure, multiorgan failure, shock, and death (16, 37, 42).  85 

The Pathophysiology of SARS-CoV-2 Infection 86 

The genetic sequence of SARS-CoV-2 showed more than 80% shared identity to SARS-CoV and 87 

50% to the MERS-CoV, and both SARS-CoV and MERS-CoV originate in bats and infect humans and 88 

wild animals (2, 7, 26, 38). Cellular CoV entry is a complex process that involves receptor-binding and 89 

proteolysis leading to virus-cell fusion. CoV is made up of four structural proteins: spike (S), membrane 90 

(M), nucleocapsid (N), and envelope (E) proteins. The S protein mediates receptor binding on the host 91 

cell membrane through the receptor-binding domain (RBD) in the S1 domain and membrane fusion 92 

through the S2 subunit (18, 40). Angiotensin-converting enzyme 2 (ACE2) is the cellular receptor for 93 

SARS-CoV and SARS-CoV-2, in contrast to MERS-CoV, which utilizes dipeptidyl peptidase 4 (DPP4) 94 

as its cellular receptor (24, 33) (Figure 1). This interaction thus determines host tropism and ultimately 95 

clearance of the virus. ACE2 is expressed in the upper respiratory system, type I and II alveolar epithelial 96 

cells in the lungs, the heart, endothelial cells, kidney tubular epithelium, enterocytes, and the pancreas 97 

(10, 24, 25, 54). After binding to ACE2, proximal serine proteases such as TMPRSS2 are involved in S 98 
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protein priming and cleavage of the spike (Figure 1). Proteases such as Furin subsequently release the 99 

spike fusion peptide, and the cellular virus enters through an endosomal pathway (18, 40). The low pH 100 

and presence of proteases such as cathepsin-L characteristic of the endosomal microenvironment favor 101 

the delivery of SARS-CoV-2 genome into the cytosol where further viral replication leads to the 102 

formation of mature virions and subsequent spread.  103 

Infected cells undergo apoptosis or necrosis and trigger inflammatory responses marked by the 104 

activation of pro-inflammatory cytokines or chemokines, which leads to the recruitment of inflammatory 105 

cells. CD4+ T helper (Th1) cells regulate antigen presentation and immunity against intracellular 106 

pathogens such as CoV through interferon gamma (IFN-γ) production. Th17 cells induce the recruitment 107 

of neutrophils and macrophages by producing interleukin-17 (IL-17), IL-21, and IL-22 (9). SARS-CoV-2 108 

infects circulating immune cells and increases apoptosis of lymphocytes (CD3, CD4, and CD8 T cells) 109 

leading to lymphocytopenia. Indeed, the degree of lymphocytopenia is associated with the severity of 110 

SARS-CoV-2 infection (16, 45, 50, 52). Lower T cell function relieves the inhibition on innate immune 111 

system leading to secretion of high amounts of inflammatory cytokines in what is known as a “cytokine 112 

storm” (31). In fact, circulating levels of cytokines/chemokines (IL-6, tumor necrosis factor-α [TNF]) and 113 

chemokines (CXC-chemokine ligand 10 [CXCL10] and CC-chemokine ligand 2 [CCL2]) involved in the 114 

cytokine storm syndrome are elevated and may play a role in SARS-CoV-2 driven hyperinflammation 115 

leading to multiorgan failure (15, 28, 41). 116 

Potential Mechanisms that increase the risk of COVID-19 in Diabetes  117 

It is now well recognized that older age and the presence of DM, hypertension, and severe obesity 118 

(BMI≥ 40 kg/m2) increases morbidity and mortality in patients with COVID-19 (16, 30, 32, 48, 50, 52, 119 

56). Considering the high prevalence of cardiovascular disease (CVD), obesity, and hypertension in 120 

patients with DM, it is unknown whether DM independently contributes to this increased risk. However, 121 

plasma glucose levels and DM are independent predictors for mortality and morbidity in patients with 122 

SARS (49). Potential mechanisms that may increase the susceptibility for COVID-19 in patients with DM 123 

include: a) higher affinity cellular binding and efficient virus entry, b) decreased viral clearance, c) 124 

diminished T cell function, d) increased susceptibility to hyperinflammation and cytokine storm 125 

syndrome, and e) presence of CVD (Figure 2). 126 

 Augmented ACE2 expression in alveolar AT2 cells, myocardium, kidney, and pancreas may 127 

favor increased cellular binding of SARS-CoV-2 (25, 27, 58). Increased expression of ACE2 has been 128 

demonstrated in the lung, kidney, heart, and pancreas in rodent models of DM (35, 46). Insulin 129 

administration attenuates ACE2 expression (35, 46), while hypoglycemic agents such as glucagon-like 130 

peptide – 1 (GLP-1) agonists (liraglutide) and thiazolidinediones (TZDs; pioglitazone), antihypertensives 131 

such as ACE inhibitors, and statins upregulate ACE2 (14, 36, 39, 44, 53). Until recently, whether DM 132 

Downloaded from journals.physiology.org/journal/ajpendo at Univ De Bordeaux 2 (147.210.215.016) on April 4, 2020.



was causally linked to ACE2 expression levels in the lung in humans was unknown. Using a phenome-133 

wide Mendelian randomization study, Rao et al. explored diseases or traits that may be causally linked to 134 

increased ACE2 expression in the lung (34). Interestingly, they found that DM was causally associated 135 

with increased lung ACE2 expression (34). Circulating levels of furin, a cellular protease involved in 136 

facilitating viral entry by cleaving the S1 and S2 domain of the spike protein, are elevated in patients with 137 

DM (13). These studies support the hypothesis that patients with DM are susceptible to SARS-CoV-2 138 

infection. Indeed, a recent study reported that clearance of SARS-CoV-2 was delayed in patients with 139 

DM, a finding that needs to be confirmed in larger studies (6) (Figure 2). 140 

 ACE catalyzes the conversion of the prohormone, angiotensin I to the octapeptide, angiotensin II 141 

(AngII), whereas ACE2 converts AngII to angiotensin 1–7. AngII, through the activation of Ang II type 1a 142 

receptors induces vasoconstriction and proliferation, whereas angiotensin 1–7 stimulates vasodilatation and 143 

suppresses cell growth (Figure 1). Increased ratio of pulmonary ACE/ACE2 activity as observed in 144 

patients with ARDS (43), favors AngII generation. Once bound to ACE2, SARS-CoV downregulates 145 

cellular expression of ACE2, and the unopposed action of AngII contributes to acute lung injury (20). 146 

Binding to ACE2 alone does not lead to severe lung injury as is observed with other CoVs (NL63) (7, 147 

38). Whether SARS-CoV-2 causes down-regulation of pulmonary ACE2 is unknown. Nevertheless, there 148 

exists a potential for salutary, if not therapeutic effects, of Ang II receptor blockers, ACE inhibitors, 149 

TZDs, GLP-1 agonists, and statins in the setting of low ACE2 expression. Lacking further evidence of 150 

risk or benefit, the American College of Cardiology, the American Heart Association, and the American 151 

Society of Hypertension have recommended that patients should continue treatment with their usual 152 

antihypertensive therapy (8).  153 

  DM inhibits neutrophil chemotaxis, phagocytosis, and intracellular killing of microbes. 154 

Impairments in adaptive immunity characterized by an initial delay in the activation of Th1 cell-mediated 155 

immunity and a late hyper-inflammatory response is often observed in diabetics (17). In an elegant study, 156 

Kulcsar et al. examined the effects of DM in a humanized mouse model of MERS-CoV infection on a 157 

high-fat diet (21). Following MERS-CoV infection, the disease was more severe and prolonged in 158 

diabetic male mice and was characterized by alterations in CD4+ T cell counts and abnormal cytokine 159 

responses (such as elevated IL17a). Consistent with this finding, in patients with COVID-19, peripheral 160 

counts of CD4+ and CD8+ T cells are low, but with a higher proportion of highly proinflammatory Th17 161 

CD4+ T cells, as well as elevated cytokine levels (16, 45, 47, 50, 52). Thus, it is likely that patients with 162 

DM may have blunted anti-viral IFN responses, and the delayed activation of Th1/Th17 may contribute to 163 

accentuated inflammatory responses (Figure 2). 164 

Conclusion 165 
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There is a paucity of data in the US regarding comorbidities and COVID-19 outcomes and 166 

mechanisms that modulate viral pathogenesis. Certain racial groups such as African Americans, 167 

Hispanics, Asians, and Native Americans are highly prone to develop DM and disparities in health care 168 

make these groups more vulnerable. Identification of clinical and biochemical parameters using multi-169 

omics approaches that predict severity of the COVID-19 in DM using large data sets is urgently needed. 170 

Studies in humanized ACE2 (hACE2) mice and non-human primates aimed at understanding how 171 

hyperglycemia, hyperinsulinemia, and hypoglycemic agents affect pathogenesis of COVID-19 and how 172 

DM affects the efficacy of vaccines and anti-viral investigational agents currently in trials are warranted. 173 

Finally, we need to develop novel ways to deliver care to our DM patients using telehealth, remote patient 174 

monitoring, and wearable technologies. As the global pandemic unfolds and rapidly spreads across the 175 

US, social isolation measures will enable the transition, but there is an urgent need for basic and clinical 176 

investigations to address the many important and unanswered questions. 177 

 178 
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Figure Legends 

Figure 1. Cellular entry of SARS-CoV-2. The initial step in cellular entry of the virus is the binding of 372 

SARS-CoV-2 spike protein to cell surface angiotensin converting enzyme 2 (ACE2). Cellular proteases 373 

such as TMPRSS2 and furin are involved in priming of the S protein which involves cleavage at the 374 

S1/S2 domains. This allows the fusion of the virus to the cell surface. Virions are taken up into 375 

endosomes, where SARS-CoV-2-S is cleaved and possibly activated by the pH-dependent cysteine 376 

protease cathepsin L. Once inside the cell, SARS-CoV-2 uses the endogenous cellular machinery to 377 

replicate itself. ACE catalyzes the conversion of angiotensin I to the octapeptide, angiotensin II (AngII), 378 

whereas ACE2 converts AngII to angiotensin 1–7. AngII through the activation of Ang II type 1a 379 

receptors induces vasoconstriction and proliferation, whereas angiotensin 1–7 stimulates vasodilatation 380 

and suppresses cell growth. 381 

Figure 2. Putative mechanisms contributing to increased susceptibility for COVID-19 in patients 
with diabetes mellitus (DM). Following aerosolized uptake of SARS-CoV-2, invasion of the respiratory 

epithelium and other target cells by SARS-CoV-2 involves binding to cell surface ACE2. Increased 

expression of ACE2 may favor more efficient cell binding and entry into cells. Early recruitment and 

function of neutrophils and macrophages are impaired in DM. Delay in the initiation of adaptive 

immunity and dysregulation of the cytokine response in DM may lead to the initiation of cytokine storm. 
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