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SUMMARY

Effective countermeasures against the recent emer-
gence and rapid expansion of the 2019 novel corona-
virus (SARS-CoV-2) require the development of data
and tools to understand and monitor its spread and
immune responses to it. However, little information
is available about the targets of immune responses
to SARS-CoV-2. We used the Immune Epitope Data-
base and Analysis Resource (IEDB) to catalog
available data related to other coronaviruses. This
includes SARS-CoV, which has high sequence simi-
larity to SARS-CoV-2 and is the best-characterized
coronavirus in terms of epitope responses. We iden-
tified multiple specific regions in SARS-CoV-2 that
have high homology to the SARS-CoV virus. Parallel
bioinformatic predictions identified a priori potential
B and T cell epitopes for SARS-CoV-2. The indepen-
dent identification of the same regions using two
approaches reflects the high probability that these
regions are promising targets forimmune recognition
of SARS-CoV-2. These predictions can facilitate
effective vaccine design against this virus of high
priority.

INTRODUCTION

On December 31, 2019, the Chinese Center for Disease Control
(China CDC) reported a cluster of severe pneumonia cases of un-
known etiology in the city of Wuhan in the Hubei province of
China. Shortly thereafter, public health professionals identified
the likely causative agent to be a novel Betacoronavirus
(SARS-CoV-2). The current outbreak, COVID-19, has 81,109
confirmed cases worldwide with 2,718 deaths, as of February
26, 2020, according to the World Health Organization (WHO) in
collaboration with the China CDC and public health centers in
other countries. Although the majority of cases have occurred
in China, a small number have been confirmed in 24 other coun-
tries, including Japan, Thailand, South Korea, Singapore, Viet-

nam, India, the United States, Canada, Germany, France, ltaly,
and the United Arab Emirates. These numbers are changing
rapidly. For up-to-date information about COVID-19, see the
WHO website at https://www.who.int/emergencies/diseases/
novel-coronavirus-2019.

The Immune Epitope Database and Analysis Resource (IEDB)
is a repository of epitope-related information curated from the
scientific literature in the context of infectious disease, allergy,
and autoimmunity (Vita et al., 2019). The IEDB also provides bio-
informatic tools and algorithms that allow for the analysis of
epitope data and prediction of potential epitopes from novel se-
quences. The Virus Pathogen Resource (ViPR) is a complemen-
tary repository of information about human pathogenic viruses
that integrates genome, gene, and protein sequence information
with data about immune epitopes, protein structures, and host
responses to virus infections (Pickett et al., 2012).

Limited information is currently available on which parts of the
SARS-CoV-2 sequence are recognized by human immune re-
sponses. Such knowledge is of immediate relevance and would
assist vaccine design and facilitate the evaluation of vaccine
candidate immunogenicity, as well as monitoring of the potential
consequences of mutational events and epitope escape as the
virus is transmitted through human populations.

Although no epitope data are yet available for SARS-CoV-2,
there is a significant body of information about epitopes for co-
ronaviruses in general, and in particular for Betacoronaviruses
like SARS-CoV and MERS-CoV, which cause respiratory dis-
ease in humans (de Wit et al., 2016; Song et al., 2019). Here,
we used the IEDB and ViPR resources to compile known epitope
sites from other coronaviruses, map corresponding regions in
the SARS-CoV-2 sequences, and predict likely epitopes. We
also used validated bioinformatic tools to predict B and T cell
epitopes that are likely to be recognized in humans and to assess
the conservation of these epitopes across different coronavirus
species.

RESULTS

A Wealth of Data Related to Coronaviruses Is Available
in the IEDB

Coronaviruses belong to the family Coronaviradae, order Nido-
virales, and can be further subdivided into four main genera
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Figure 1. Comparison of SARS-CoV-2 (Wuhan-Hu-1) Genome Structure with Its Closest Bat Relative (bat-SL-CoVZXC21), Tor2 SARS-CoV,

and HCoV-EMC MERS-CoV

Above: Coding sequence (CDS) regions corresponding to homologous proteins between the four viruses are filled with the same color in the genome schematic to
indicate homology; regions with no homology to the predicted SARS-CoV-2 proteins are colored white. Below: Table of pairwise protein similarities (expressed as

% identity) between SARS-CoV-2 and the other three viruses.

(Alpha-, Beta-, Gamma-, and Deltacoronaviruses). Several
Alpha- and Betacoronaviruses cause mild respiratory infections
and common cold symptoms in humans, whereas others are
zoonotic and infect birds, pigs, bats, and other animals. In addi-
tion to SARS-CoV-2, two other coronaviruses, SARS-CoV and
MERS-CoV, caused large disease outbreaks that had high
(10%-30%) lethality rates and widespread societal impact
upon emergence (Figure 1) (de Wit et al., 2016; Song et al., 2019).

The immune response to SARS-CoV-2 in humans awaits
characterization, but human immune responses against other
coronaviruses have been investigated. As of January 27,
2020, the IEDB has curated 581 linear, and 81 as discontin-
uous, B cell epitopes that have been reported in the peer-
reviewed literature. In addition, 320 peptides have been re-
ported as T cell epitopes (Table 1). The vast majority of these
epitopes are derived from Betacoronavirues, and more specif-
ically from SARS-CoV, which alone accounts for over 60% of
them. In terms of the host in which the various B and T cell epi-
topes were recognized (Table 2), most epitopes (either B or T)
were defined in humans or murine systems. Notably, all but 2 of
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the 417 B and T cell epitopes described in humans are from
Betacoronaviruses, with 398 of them coming from SARS-CoV.

SARS-CoV-2 Similarity to Other Betacoronaviruses
Comparison of a consensus SARS-CoV-2 protein sequence to
sequences for SARS-CoV, MERS-CoV and bat-SL-CoVZXC21
revealed a high degree of similarity (expressed as % identity) be-
tween SARS-CoV-2, bat-SL-CoVZXC21, and SARS-CoV, but a
more limited similarity with MERS-CoV (Figure 1). This is in
agreement with a recent paper published on February 7, 2020
that shows the highest similarity between SARS-CoV-2 and
SARS or SARS-like CoVs (Wu et al., 2020). Further, SARS-Cov
is the closest related virus to SARS-CoV-2 for which a significant
number of epitopes have been defined in humans (and other
species) and that also causes human disease with lethal out-
comes. Accordingly, in the following analyses, we focused on
comparing known SARS-CoV epitope sequences to the SARS-
CoV-2 sequence.

We first assessed the distribution of SARS-CoV-derived epi-
topes as a function of the protein of origin (Table 3). In the context
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Table 1. IEDB Inventory of Coronavirus B and T Cell Epitopes

Epitope set Type Coronavirus Total
Alpha Beta Gamma
SARS-CoV MERS-CoV Other
B cell Conformational 18 27 23 2 11 81
Linear 81 405 5] 60 30 581
T cell 61 164 25 54 16 320

of B cell responses, most of the 12 antigens in the SARS-CoV
proteome are associated with epitopes, with the greatest num-
ber derived from spike glycoprotein, nucleoprotein, and mem-
brane protein (Table 3). The paucity of B cell epitopes associated
with the other proteins is likely because, on average, B cell
epitope screening studies to date have probed regions consti-
tuting less than 20% of each respective sequence, including
<1% of the Orf 1ab polyprotein. By comparison, the complete
span of the spike glycoprotein, nucleoprotein, and membrane
protein sequences have been probed at least to some extent
in B cell assays.

A similar situation was observed in the case of T cell epitopes.
Here, we only considered epitopes whose recognition is
restricted by human leukocyte antigen (HLA) major histocompat-
ibility complex (MHC), because MHC polymorphism typically re-
sults in different epitopes being recognized in humans and mice.

Defining Immunodominant Regions within the SARS-
CoV Genome

B cell epitopes derived from SARS-CoV were mapped back to a
SARS-CoV reference sequence using the IEDB’s Immuno-
browser tool (Dhanda et al., 2018). This tool combines all records
available along a reference sequence and produces a response
factor (RF) score that accounts for the positivity rate (how
frequently a residue was found in a positive epitope) and the
number of records (how many independent assays are reported).
Dominant regions were identified considering residues stretches
where the RF score was >0.3.

Analyses of the spike glycoprotein, membrane protein, and
nucleoproteins are shown in Figure 2. In the case of the spike
glycoprotein (Figure 2A), we identify five regions of potential in-
terest (residues 274-306, 510-586, 587-628, 784-803, and

870-893), all representing regions associated with high immune
response rates. Three of these immunodominant regions are
located in the S1 subunit in the CTD2 and CTD3 (C-terminal
domain), whereas the other two are in the HR1 domain of the
S2 subunit.

Next, we aligned the SARS-CoV B cell epitope region se-
quences to the SARS-CoV-2 sequence to calculate the percent-
age identity between each of the SARS-CoV-dominant regions
and SARS-CoV-2 (Table 4). Of the 10 regions identified, 6 had
90% or more identity with SARS-CoV-2, 2 were between
80%-89% identical, and 2 had lower but still appreciable homol-
ogy (69% and 78%).

In a similar analysis, T cell epitopes were also found to be pre-
dominantly associated with spike glycoprotein and nucleopro-
tein (Table 3). Table 5 shows a listing of the most dominant
SARS-CoV individual epitopes identified to date in humans.
We also aligned the SARS-CoV T cell epitope sequences and
calculated for each epitope the percentage identity to SARS-
CoV-2. For each T cell epitope, Table 5 shows the antigen of
origin, the epitope sequence, the homologous SARS-CoV-2
sequence, and the corresponding percentage of sequence
identity. Overall, the nucleocapsid phosphoprotein and mem-
brane-derived epitopes were most conserved (8/10 and 2/3,
respectively, had > 85% identity with SARS-CoV-2). The Orflab
and surface glycoprotein epitopes were moderately conserved
(8/7 and 10/23, respectively, had >85% identity with SARS-
CoV-2), and Orf 3a epitopes were the least conserved.

Prediction of SARS-CoV-2 B Cell Epitopes

To define potential B cell epitopes by an alternative method, we
used the predictive tools provided with the IEDB. B cell epitope
predictions were carried out using the SARS-CoV-2 surface

Table 2. IEDB Inventory of Coronavirus B and T Cell Epitopes

Epitope set Host Coronavirus® Total
Alpha Beta Gamma
SARS-CoV MERS-CoV Other

B cell® Humans 0 306 16 0 0 322
Mice 62 154 9 58 20 303
Other 42 142 5] 6 23 218
Tg mice 0 0 0 0 0 0

T cell Humans 2 92 0 1 0 95
Mice 16 99 25 53 1 194
Other 46 1 0 0 15 62
Tg mice 0 29 0 0 0 29

2B cell includes both conformational and linear epitipes.

PTotals between Tables 1 and 2 may not be equal as several epitopes are recognized in multiple species.
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Table 3. IEDB Inventory of Coronavirus B and T Cell Epitopes

SARS-CoV Proteins B Cell T Cell
Spike glycoprotein 279 48
Nucleoprotein 113 33
Membrane protein 20 4
Replicase polyprotein 1ab 8 9
Protein 3a 2 7
Envelope small membrane protein 2 0
Non-structural protein 3b 2 0
Protein 7a 2 0
Protein 9b 2 0
Non-structural protein 6 1 0
Protein non-structural 8a 1 0

T cell epitope total includes epitopes recognized in humans and/or trans-
genic mice.

glycoprotein, nucleocapsid phosphoprotein, and membrane
glycoprotein sequences, which, as described above, were found
to be the main protein targets for B cell responses to other coro-
naviruses. In parallel, we performed predictions for linear B cell
epitopes with Bepipred 2.0 (Jespersen et al., 2017) and for
conformational epitopes with Discotope 2.0 (Kringelum et al.,
2012). Both prediction algorithms are available on the IEDB
B cell prediction tool page (http://tools.iedb.org/main/bcell/). A
full list of B cell epitope prediction results per amino acid position
per protein is provided in Table S1.

Using Bepipred 2.0 and a cutoff of >0.55 (corresponding to
a specificity cutoff of 80%) (Jespersen et al., 2017), the sur-
face glycoprotein had the highest number of predicted
B cell epitopes, followed by membrane glycoprotein and
nucleocapsid phosphoprotein (Table S2). To predict and
map conformational B cell epitopes, we used the recently
submitted SARS-CoV-2 spike glycoprotein structure (PDB:
6VSB). A list of surface glycoprotein amino acid positions hav-
ing a high probability of being included in predicted B cell epi-
topes, based on analysis with the Discotope 2.0 algorithm, is
shown in Table S1 (cutoff of >—2.5, corresponding to 80%
specificity). We then localized the relevant amino acid posi-
tions onto the model structure, which allowed the identifica-
tion of seven predicted epitope residue/regions (491-505,
558-562, 703-704, 793-794, 810, 914, and 1140-1146) in
the surface glycoprotein (Figure 3).

Prediction of SARS-CoV-2 T Cell Epitopes

To predict CD4 T cell epitopes, we used the method described
by Paul and co-authors (Paul et al., 2015a), as implemented in
the Tepitool resource in IEDB (Paul et al., 2016). This approach
was designed and validated to predict dominant epitopes inde-
pendently of ethnicity and HLA polymorphism, taking advantage
of the extensive cross-reactivity and repertoire overlap between
different HLA class Il loci and allelic variants. Here, we selected
peptides that have a median consensus percentile <20, a
threshold associated with epitope panels responsible for about
50% of target-specific responses. Using this threshold, we
identified 241 candidates in the SARS-CoV-2 sequence (see
Table S3).
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In previous experiments, we showed that pools based on
similar peptide numbers can be generated by sequential lyoph-
ilization (Carrasco Pro et al., 2015). These peptide pools (or
megapools) incorporate predicted or experimentally validated
epitopes and allow measurement of magnitude and character-
ization of the phenotype of human T cell responses in infectious
disease indications such as Bordetella pertussis, Mycobacteria
tuberculosis, Dengue, and Zika viruses (Carrasco Pro et al.,
2015; da Silva Antunes et al., 2018; Grifoni et al., 2017, 2018).
The SARS-CoV-2 CD4 megapool covers all 10 predicted pro-
teins, with the number of potential epitopes proportional to the
size of each protein (Table S4).

In parallel, we also sought to define likely CD8 epitopes. Here,
a different approach was required because the overlap between
different HLA class | allelic variants and loci is more limited to
specific groups of alleles, or supertypes (Sidney et al., 2008).
Following a previously validated approach (Weiskopf et al.,
2013), we assembled a set of the 12 most prominent HLA class
| alleles that have been shown to allow broad coverage of the
general population, as described in the STAR Methods (see
also Table S5). We then performed HLA class | binding predic-
tions using the Net MHC pan 4.0 EL algorithm (Jurtz et al.,
2017) available at the IEDB. For each allele, we selected the
top 1% scoring peptides in the SARS-CoV-2 sequence, as
ranked based on prediction. After eliminating redundancies
and nested peptides, we obtained a final “in silico” megapool
of 628 unique predicted epitopes. Table S6 lists those unique
predicted epitopes per protein, indicating for each their respec-
tive HLA restriction(s).

Correspondence between the Epitopes Identified by the
Two Different Approaches

The epitopes identified by homology to the experimentally
defined SARS-CoV epitopes shown in Tables 4 and 5 were
next compared with the epitopes identified by epitope predic-
tions shown in Tables S2, S8, and S6. The epitopes indepen-
dently identified in both approaches are presumed to be the
most valuable leads.

We first compared B cell immunodominant regions identi-
fied in SARS-CoV and mapped to the homologous SARS-
CoV-2 proteins (Table 4), with the predicted linear (Table S2)
and conformational (Table S1) B cell epitopes. Out of the
five B cell immunodominant regions from the SARS spike
glycoprotein that were mapped to SARS-CoV-2, three regions
overlapped with those identified by BebiPred 2.0, and two
overlapped with regions predicted by Discotope 2.0 (Figure 3;
Table S1). No overlap was observed for the five regions of
SARS-CoV membrane protein and nucleoprotein that mapped
to SARS-CoV-2 and those predicted by BebiPred 2.0. As
stated above, no Discotope 2.0 prediction was available for
those two proteins.

The prediction analysis performed with Discotope 2.0 based
on the SARS-CoV-2 spike glycoprotein PDB structure indepen-
dently confirms two of the likely epitope regions defined on the
basis of SARS-CoV data. Specifically, one dominant epitope
corresponds to the 524-598 epitope from Table 5, which over-
laps with the 558-562 predicted epitope, and the 802-819 region
is also predicted (cf., the predicted 810 residue is in the middle of
this region). Finally, the 888-909 region is narrowly missed,
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Figure 2. B Cell Immunodominant Regions Based on SARS-Specific Epitope Mapping
RF score for each amino acid position was calculated (see STAR Methods) and plotted over the SARS-CoV consensus sequence of spike glycoprotein (A),

membrane protein (B), and nucleoprotein (C).

because residue 914, which is predicted, is right outside of the
epitope.

When we compared the SARS-CoV T cell epitopes that map-
ped to SARS-CoV-2 (Table 5) with the predicted CD4 and CD8
T cell epitopes (Tables S3 and S6, respectively), we found that
12 of 17 SARS-CoV-2 T cell epitopes with high sequence identity
(=90%) to the SARS-CoV were independently identified by the
two methods. Another 7 of 16 epitopes with moderate sequence
identity (70%-89%), and 6 of 12 epitopes with low sequence
identity (<70%) were also identified by both methods. The lack
of absolute correspondence is not surprising, given that the
experimental data are derived from a skewed set of HLA restric-
tions (largely HLA A*02:01) and that our HLA class | prediction

strategy targeted a more limited set of alleles selected to repre-
sent the most frequent worldwide variants; at the same time, the
class Il predictions are expected to cover 50% of the class Il re-
sponses (Paul et al., 2015b).

DISCUSSION

The present study identifies likely targets of the human immune
response to SARS-CoV-2, encompassing both the B and T cell
arms of the adaptive immune response. This is of relevance in
the face of the ever growing medical and societal urgency sur-
rounding COVID-19, especially given the current scarcity of
experimental data regarding any corresponding immune
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Table 4. Dominant SARS-CoV B Cell Epitope Regions

SARS-CoV SARS-CoV-2

Sequence Max RF Sequence Protein? Mapped Start-End Identity (%)
DAVDCSQNPLAELKCSVKSFEIDK 0.504 DAVDCALDPLSETKCTLKS S 287-317 69
GIYQTSNF FTVEKGIYQTSN

VCGPKLSTDLIKNQCVNFNFNGL 0.745 VCGPKKSTNLVKNKCVNFNFN S 524-598 80
TGTGVLTPSSKRFQPFQQFGRD GLTGTGVLTESNKKFLPFQQF

VSDFTDSVRDPKTSEILDISPCSF GRDIADTTDAVRDPQTLEILDI

GGVSVIT TPCSFGGVSVI

GTNASSEVAVLYQDVNCTDVSTA 0.709 GTNTSNQVAVLYQDVNCTEVPVA S 601-640 78
IHADQLTPAWRIYSTGNN IHADQLTPTWRVYSTGS

FSQILPDPLKPTKRSFIED 0.365 FSQILPDPSKPSKRSFIE S 802-819 89
FGAGAALQIPFAMQMAYRFNGIG 0.367 FGAGAALQIPFAMQMAYRFNGI S 888-909 100
MADNGTITVEELKQLLEQWNLVIG 0.460 MADSNGTITVEELKKLLEQWNLVI M 1-24 92
PLMESELVIGAVIIRGHLRMA 0.457 PLLESELVIGAVILRGHLRI M 132-151 90
PQGLPNNTASWFTALTQHGKEE 0.537 RPQGLPNNTASWFTALTQHGK N 42-62 95
NNAATVLQLPQGTTLPKGFYA 0.543 NNNAATVLQLPQGTTLPKGF N 153-172 95
KHIDAYKTFPPTEPKKDKKKKTDEAQ 0.82 NKHIDAYKTFPPTEPKKDKKKKTD N 355-401 90
PLPQRQKKQPTVTLLPAADMDD EAQPLPQRQKKQPTVTLLPAADM

S, surface glycoprotein; M, membrane protein; N, nucleocapsid phosphoprotein

response. The approach we followed is based on establishing
several lines of evidence that clearly pinpoint SARS-CoV as a
relevant model to extrapolate likely targets of responses to
SARS-CoV-2, the virus associated with COVID-19.

The first line of evidence pertains to the fact that of coronavi-
ruses known to infect humans, SARS-CoV is the most similar
in phylogenetic terms to SARS-CoV-2. The second line of evi-
dence is that SARS-CoV-2 is the most (and highly) similar to
SARS-CoV at the level of sequence identity. Third, when we crit-
ically reviewed the knowledge related to the precise epitopes
recognized by adaptive responses in the context of coronavi-
ruses in aggregate, it was apparent that all but 2 of the 417
B and T cell epitopes described in humans to date are from
Betacoronaviruses, with 398 of them coming from SARS-CoV.

Our analysis showed that certain SARS-CoV regions were
dominant for B cell responses and that those regions were well
conserved in terms of sequence with SARS-CoV-2. Five regions
contain epitopes recognized by neutralizing antibodies in SARS
convalescent sera (Guo et al., 2004; Shichijo et al., 2004). Among
those, of particular interest is the 587-628 region nesting the
604—-625 peptide, which was identified in a SARS convalescent
patient and found to have the capacity to elicit antibodies that
efficiently prevent infection in non-human primates (Hu et al.,
2005; Wang et al., 2016).

Two regions were identified from membrane protein (1-25
and 131-152) (Figure 2B), and three regions were identified
for nucleoprotein (43-65, 154-175, and 356-404) (Figure 2C).
The two regions in the membrane protein have been shown
to elicit marked IgM and IgG responses and a broad spectrum
of recognition, highlighting them as potential diagnostic candi-
dates (Chow et al., 2006; Wang et al., 2003). Of the three re-
gions identified in the nucleoprotein, 156-175 has shown
strong reactivity against SARS patient sera and immunogenicity
in multiple species, including mice, monkeys, and humans (Liu
et al., 2006).
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Because of the overall high level of sequence similarity of
SARS-CoV and SARS-CoV-2, we infer that the regions dominant
in SARS-CoV have a high likelihood to also be dominant in
SARS-CoV-2, even if the actual sequences are different. This
hypothesis is in agreement with the recent cryoelectron micro-
scopy (cryoEM) structure of the spike glycoprotein of SARS-
CoV-2, showing a high resemblance in the overall structure
with the SARS-CoV spike protein (Wrapp et al., 2020). In the
same study, however, the authors do not observe cross-recog-
nition of SARS-CoV monoclonal antibodies with the SARS-
CoV-2. Indeed, they observed no reactivity with SARS-CoV
antibodies that recognize the SARS-CoV-2 spike receptor bind-
ing domain (RBD), despite the fact that SARS-CoV-2 retains the
same capability to bind the ACE2 receptor of SARS-CoV (Wrapp
et al., 2020). This suggests that the B cell prediction performed
on the RBD domain will require further studies.

We also analyzed the SARS-CoV T cell epitopes. In these
cases, epitopic regions and individual epitopes were more
widely dispersed throughout the respective proteins, which
made the identification of discrete, dominant epitopic regions
more difficult. This outcome is not unexpected given that
T cells recognize short peptides generated from cellular pro-
cessing of viral antigens that can be derived from any segment
of the protein.

Itis generally expected that CD8 T cell epitopes will be derived
from both structural and nonstructural proteins (Tian et al., 2019),
because both types of proteins are endogenously processed by
infected cells. In the case of class Il epitopes, structural proteins
would be of particular interest, as they are most likely to provide
help by cognate interaction (Sette et al., 2008). When examining
the homologous regions of SARS-CoV, it has been found that the
likely T cell epitopes are positive in assays such as ELISPOT,
intra-cellular staining (ICS), and multimer/tetramer staining
(see, e.g., Cheung et al., 2007, 2008; Kohyama et al., 2009;
Tsao et al., 2006; Yang et al., 2009).
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Table 5. Dominant SARS-CoV T Cell Epitopes

SARS SARS-CoV-2
Sequence RF Score HLA Restriction® Sequence Protein Mapped Start-End Identity (%)
VRGWVFGSTMNNKSQSVI  0.15 DRB1*04:01 IRGWIFGTTLDSKTQSLL S 101-118 50
CTFEYISDAFSLD 0.21 DRB1*04:01 CTFEYVSQPFLMD S 166-178 62
DAFSLDVSEKSGN 0.62 DRB1*04:01 QPFLMDLEGKQGN S 173-185 38
TNFRAILTAFSPAQDIW 0.32 DRB1*04:01 TRFQTLLALHRSYLTPGD S 236-258 17
SSSGW
KSFEIDKGIYQTSNFRVV 0.40 DRB1*04:01, KSFTVEKGIYQTSNFRVQ S 304-321 78
DRB1*07:01
STFFSTFKCYGVSATKL 0.50 DRB1*07:01, DR8 = SASFSTFKCYGVSPTKL S 371-387 82
KLPDDFMGCV 0.55 A*02:01 KLPDDFTGCV S 424-433 90
NIDATSTGNYNYKYRYLR 0.29 Class Il NLDSKVGGNYNYLYRLFR S 440-457 56
YLRHGKLRPFERDISNVP 0.16 DRB1*04:01 YLYRLFRKSNLKPFERDI S 451-468 58
RPFERDISNVPFS 0.36 DRB1*04:01 KPFERDISTEIYQ S 462-474 54
KSIVAYTMSLGADSSIAY 0.15 DRB1*04:01, QSIIAYTMSLGAENSVAY S 690-707 72
DRB1*07:01
SIVAYTMSL 0.29 A*02:01 SIAYTMSL S 691-699 89
TECANLLLQYGSFCTQL 0.50 DR8 TECSNLLLQYGSFCTQL S 747-763 94
VKQMYKTPTLKYFGGFNF 0.20 DRB1*04:01 VKQIYKTPPIKDFGGFNF S 785-802 78
ESLTTTSTALGKLQDVV 0.42 DRB1*04:01 DSLSSTASALGKLQDVV S 936-952 71
ALNTLVKQL 0.29 A*02:01 ALNTLVKQL S 958-966 100
VLNDILSRL 0.29 A*02:01 VLNDILSRL S 976-984 100
LITGRLQSL 0.42 A*02:01 LITGRLQSL S 996-1004 100
QLIRAAEIRASANLAATK 0.20 DRB1*04:01 QLIRAAEIRASANLAATK S 1011-1028 100
SWFITQRNFFSPQII 0.60 DRB1*04:01 HWFVTQRNFYEPQII S 1101-1115 73
RLNEVAKNL 0.42 A*02:01 RLNEVAKNL S 1185-1193 100
NLNESLIDL 0.29 A*02:01 NLNESLIDL S 1192-1200 100
FIAGLIAIV 0.80 A*02:01 FIAGLIAIV S 1220-1228 100
RFFTLGSITAQPVKI 0.18 B*58:01 RIFTIGTVTLKQGEI Orf 3a 6-20 40
SITAQPVKI 0.29 B*58:01 TVTLKQGEI Orf 3a 12-20 22
TLACFVLAAV 0.59 A*02:01 TLACFVLAAV M 61-70 100
GLMWLSYFV 0.59 A*02:01 GLMWLSYFI M 89-97 89
HLRMAGHSL 0.40 Class | HLRIAGHHL M 148-156 78
ALNTPKDHI 0.29 A*02:01 ALNTPKDHI N 138-146 100
LQLPQGTTL 0.29 A*02:01 LQLPQGTTL N 159-167 100
GETALALLLL 0.38 B*40:01 GDAALALLLL N 215-224 80
LALLLLDRL 0.29 A*02:01 LALLLLDRL N 219-227 100
LLLDRLNQL 0.42 A*02:01 LLLDRLNQL N 222-230 100
RLNQLESKV 0.42 A*02:01 RLNQLESKM N 226-234 89
TKQYNVTQAF 0.29 Class | TKAYNVTQAF N 265-274 90
GMSRIGMEV 0.42 A*02:01 GMSRIGMEV N 316-324 100
MEVTPSGTWL 0.42 B*40:01 MEVTPSGTWL N 322-331 100
QFKDNVILL 0.50 A*24:02 NFKDQVILL N 345-353 78
CLDAGINYV 0.42 A*02:01 CLEASFNYL Orf1ab  2139-2147 56
WLMWFIISI 0.42 A*02:01 WLMWLIINL Orf fab  2292-2300 67
ILLLDQVLV 0.42 A*02:01 ILLLDQALV Orf 1ab  2498-2506 89
LLCVLAALV 0.42 A*02:01 SACVLAAEC Orf1ab  2840-2848 56
ALSGVFCGV 0.42 A*02:01 SLPGVFCGV Orf1ab  2942-2950 78
TLMNVITLV 0.42 A*02:01 TLMNVLTLV Orf1ab  3639-3647 89
SMWALVISV 0.42 A*02:01 SMWALIISV Orf1ab  3661-3669 89

S, surface glycoprotein; M, membrane protein; N, nucleocapsid phosphoprotein.
®Restrictions defined only in HLA-transgenic mice are indicated by the italicized font.
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We also sought to address potential SARS-CoV-2 epitopes by
a completely different method, namely utilizing the epitope pre-
dictions hosted by the IEDB (Dhanda et al., 2019; Vita et al.,
2019). For B cell epitopes, we used methods that predict linear
epitopes (Jespersen et al., 2017), and in the case of the spike
glycoprotein where a reliable structure recently became avail-
able (Wrapp et al., 2020), the Discotope 2.0 (Kringelum et al.,
2012) method that also predicts epitopes based on protein
conformation and residue exposure. The Discotope prediction
independently confirmed two of the likely epitope regions
defined on the basis of SARS-CoV data.

In the case of T cell epitopes, we utilized predictive algo-
rithms (Jurtz et al., 2017; Paul et al., 2016) to map hundreds
of potential human epitopes to account for HLA polymorphism
and for the fact that T cell epitopes are typically derived from
both structural and non-structural proteins and not limited to
exposed regions. Here, as an independent validation of the
predictions, we asked whether the predictions effectively iden-
tified the relatively few epitopes identified experimentally in
SARS-CoV, restricted by human HLA, and conserved in
SARS-CoV-2. Indeed, we found that 12 of 17 SARS-CoV-2
T cell epitopes with high sequence identity (=90%) to the
SARS-CoV were independently identified by the epitope pre-
dictions based on SARS-CoV-2 sequences.

In conclusion, the use of available information related to
SARS-CoV epitopes in conjunction with bioinformatic predic-
tions points to specific regions of SARS-CoV-2 that have a
high likelihood of being recognized by human immune re-
sponses. The observation that many B and T cell epitopes are
highly conserved between SARS-CoV-2 and SARS-CoV is
important. Vaccination strategies designed to target the immune
response toward these conserved epitope regions could

8 Cell Host & Microbe 27, 1-10, April 8, 2020

Figure 3. SARS-CoV-2 Spike Glycoprotein
(PDB: 6VSB)

The calculated surface of the top 13 amino acid
residues predicted to be B cell epitopes based on
ranking performed with Discotope 2.0 are shown
in red. The monomer is shown in the upper left.
The upper right and lower center present the
trimer in two different orientations. 3D-rendering
was performed using YASARA (Krieger and
Vriend, 2014).

generate immunity that is not only cross-protective across Beta-
coronaviruses but also relatively resistant to ongoing virus
evolution.
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STARXMETHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

SARS-CoV-2 spike glycoprotein 3D- Wrapp et al., 2020 PDB ID: 6VSB

structure

Wuhan-Hu-1 RNA isolate NCBI nuccore database GenBank:MN908947
ORF10 protein NCBI protein database NCBI: YP_009725255.1
Nucleocapsid phosphoprotein NCBI protein database NCBI: YP_009724397.2
ORF8 protein NCBI protein database NCBI: YP_009724396.1
ORF7a protein NCBI protein database NCBI: YP_009724395.1
ORFB6 protein NCBI protein database NCBI: YP_009724394.1
membrane glycoprotein NCBI protein database NCBI: YP_009724393.1
envelope protein NCBI protein database NCBI: YP_009724392.1
ORF3a protein NCBI protein database NCBI: YP_009724391.1
surface glycoprotein NCBI protein database NCBI: YP_009724390.1
orflab polyprotein NCBI protein database NCBI: YP_009724389.1
Software and Algorithms

YASARA Krieger and Vriend, 2014 http://www.yasara.org
IEDB Vita et al., 2019 https://www.iedb.org
BebiPred 2.0 Jespersen et al., 2017 http://tools.iedb.org/bcell/
Discotope 2.0 Kringelum et al., 2012 http://tools.iedb.org/bcell/
NetMHCpan EL 4.0 Jurtz et al., 2017 http://tools.iedb.org/mhci/
Tepitool Paul et al., 2016 http://tools.iedb.org/tepitool/

LEAD CONTACT AND MATERIALS AVAILABILITY

Please contact A.S. (alex@lji.org) for aliquots of synthesized sets of peptides identified in this study. There are restrictions to the avail-
ability of the peptide reagents due to cost and limited quantity.

METHOD DETAILS

IEDB Analysis of Coronavirus T and B Epitopes
T and B cell epitopes for coronaviruses were identified by searching the IEDB at the end of January 2020. Queries were performed
broadly for coronaviruses (taxonomy ID no. 11118), selecting positive assays in T cell, B cell and/or ligand contexts. Characteristics of
each unique epitope (i.e., species, protein of provenance, positive assay type(s), MHC restriction) were tabulated, as well as the total
number of donors tested and corresponding total number of donors with positive responses in B or T cell assays, and as a function of
host. Finally, T or B cell assay specific response frequency scores (RF) were calculated broadly (i.e., any host), or for specific contexts
(e.g., T cell assays in humans). Specifically, RF = [(r — sqrt(r)]/t, where r is the total number of responding donors and t is the total
number of donors tested (Carrasco Pro et al., 2015)).

SARS-CoV (tax ID no. 694009) sequence epitope density was visualized with the IEDB Immunobrowser tool (Dhanda et al., 2018).
To identity contiguous dominant regions, RF scores for each residue were recalculated to represent a sliding 10 residue window.

Comparison of Coronavirus Sequences to SARS-CoV-2

All full-length protein sequences from SARS-CoV and MERS-CoV were retrieved from ViPR (https://www.viprbrc.org/brc/home.spg?
decorator=corona) on 31 January 2020. In order to exclude sequences of experimental strains, sequences from “unknown,” mouse,
and monkey hosts were excluded from analysis. Remaining sequences were aligned using the MUSCLE algorithm in ViPR.
Sequences causing poor alignments in a preliminary analysis were removed before computing the final alignment. The consensus
protein sequences of each virus group were determined from the final alignments using the Sequence Variation Analysis tool in
ViPR. Protein sequences from natural virus isolates with sequences identical to the SARS-CoV and MERS-CoV consensus were
selected for use in epitope sequence analysis.
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Determination of SARS-CoV-2 Sequence Conservation

Each Wuhan-Hu-1 (GeneBank: MN908947) protein sequence was compared against the consensus protein sequences from SARS-
CoV and MERS-CoV and the protein sequences from closest bat relative (bat-SL-CoVZXC21) using the BLAST algorithm (ViPR;
https://www.viprbrc.org/bre/blast.spg?method=ShowCleaninputPage&amp;decorator=corona) to compute the pairwise identity
between Wuhan-Hu-1 proteins and their comparison target.

SARS-CoV-2 B Cell Epitope Prediction

Linear B cell epitope predictions were carried out on three different coronavirus proteins: surface glycoprotein (S), nucleocapsid
phosphoprotein (N) and membrane glycoprotein (M) (NCBI: YP_009724390.1, YP_009724397.2 and YP_009724393.1, respectively)
as the homologous versions of these proteins are the primary targets of B cell immune responses for SARS-CoV. We used the
BebiPred 2.0(Jespersen et al., 2017) algorithm embedded in the B cell prediction analysis tool available in IEDB (Zhang et al.,
2008). For each protein, the epitope probability score for each amino acid and the probability of exposure was retrieved. Potential
B cell epitopes were predicted using a cutoff of 0.55 (corresponding to specificity greater than 0.81 and sensitivity below 0.3) and
considering sequences having more than 7 amino acid residues. Structure-based antibody prediction was performed by using
Discotope 2.0 (Kringelum et al., 2012), available in IEDB (Zhang et al., 2008) and a positivity cutoff greater than —2.5 was applied
(corresponding to specificity greater than or equal to 0.80 and sensitivity below 0.39), using the SARS-CoV-2 spike glycoprotein
structure (PDB ID: 6VSB).

SARS-CoV-2 T Cell Epitope Prediction

Epitope prediction was carried out using the ten proteins predicted for the reference SARS-CoV-2 isolate, Wuhan-Hu-1. The corre-
sponding protein accession identification numbers are: NCBI: YP_009725255.1 (Orf 10), NCBI: YP_009724397.2 (N), NCBI:
YP_009724396.1 (Orf 8), NCBI: YP_009724395.1 (Orf 7a), NCBI: YP_009724394.1 (Orf 6), NCBI: YP_009724393.1 (M), NCBI:
YP_009724392.1 (Envelope protein, E), NCBI: YP_009724391.1 (Orf 3a), NCBI: YP_009724390.1 (S), and NCBI: YP_009724389.1
(Orf 1ab).

For CD4 T cell epitope prediction, we applied a previously described algorithm that was developed to predict dominant HLA class Il
epitopes, using a median consensus percentile of prediction cutoff < 20 as recommended (Paul et al., 2015b). For CD8 T cell epitope
prediction, we selected the 12 most frequent HLA class | alleles in the worldwide population (Middleton et al., 2003; Paul et al., 2013),
using a phenotypic frequency cutoff > 6%. The specific alleles included were: HLA-A*01:01, HLA-A*02:01, HLA-A*03:01,
HLA-A*11:01, HLA-A*23:01, HLA-A*24:02, HLA-B*07:02, HLA-B*08:01, HLA-B*35:01, HLA-B*40:01, HLA-B*44:02, HLA-B*44:03.
The SARS-CoV-2 protein sequences were run against this set of alleles using the NetMHCpan EL 4.0 algorithm and a size range
of 8-14mers (Jurtz et al., 2017). For each HLA class | allele analyzed, we selected the top 1% epitopes ranked based on prediction
score. To generate afinal set for synthesis, duplicate peptides (i.e., those selected for multiple alleles) were reduced to a single occur-
rence, and nested peptides were ensconced within longer sequences, up to 14 residues in length, before assigning the multiple cor-
responding HLA restrictions for each region.

QUANTIFICATION AND STATISTICAL ANALYSIS

No statistical analyses were utilized in the present theoretical study, based on data in the published literature and publicly available
databases. Calculations of % identity and response factor scores were performed as described in the Method Details, above.

DATA AND CODE AVAILABILITY
All data presented and analyzed in the present study was retrieved from the IEDB and PDB, as described above. The published article

includes all data generated or analyzed during this study, and summarized in the accompanying tables, figures and Supplemental
Materials. Text files of data downloaded from the IEDB are available from the corresponding author on request.
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