
Contents lists available at ScienceDirect

Journal of Autoimmunity

journal homepage: www.elsevier.com/locate/jautimm

Autoinflammatory and autoimmune conditions at the crossroad of COVID-
19
Yhojan Rodrígueza,1, Lucia Novellib,1, Manuel Rojasa, Maria De Santisb, Yeny Acosta-Ampudiaa,
Diana M. Monsalvea, Carolina Ramírez-Santanaa, Antonio Costanzoc,d, William M. Ridgwaye,
Aftab A. Ansarie, M. Eric Gershwine,∗∗∗, Carlo Selmib,d,∗∗, Juan-Manuel Anayaa,∗

a Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
b Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center (IRCCS), Rozzano, Milan, Italy
c Dermatology, Humanitas Clinical and Research Center, IRCCS, Rozzano, Milan, Italy
d Humanitas University, Department of Biomedical Sciences, Pieve Emanuele, Milan, Italy
e Division of Rheumatology, Allergy, and Clinical Immunology, University of California, Davis, CA, USA

A R T I C L E I N F O

Keywords:
SARS-CoV-2
COVID-19
Autoimmunity
Antiphospholipid syndrome
Cytopenia
Guillain-Barré syndrome
Kawasaki disease
Cytokine storm syndrome
Vaccines

A B S T R A C T

Coronavirus disease 2019 (COVID-19) has been categorized as evolving in overlapping phases. First, there is a
viral phase that may well be asymptomatic or mild in the majority, perhaps 80% of patients. The pathophy-
siological mechanisms resulting in minimal disease in this initial phase are not well known. In the remaining
20% of cases, the disease may become severe and/or critical. In most patients of this latter group, there is a phase
characterized by the hyperresponsiveness of the immune system. A third phase corresponds to a state of hy-
percoagulability. Finally, in the fourth stage organ injury and failure occur. Appearance of autoinflammatory/
autoimmune phenomena in patients with COVID-19 calls attention for the development of new strategies for the
management of life-threatening conditions in critically ill patients. Antiphospholipid syndrome, autoimmune
cytopenia, Guillain-Barré syndrome and Kawasaki disease have each been reported in patients with COVID-19.
Here we present a scoping review of the relevant immunological findings in COVID-19 as well as the current
reports about autoinflammatory/autoimmune conditions associated with the disease. These observations have
crucial therapeutic implications since immunomodulatory drugs are at present the most likely best candidates
for COVID-19 therapy. Clinicians should be aware of these conditions in patients with COVID-19, and these
observations should be considered in the current development of vaccines.

1. Introduction

In December 2019, there were the earliest reported clusters of pa-
tients with pneumonia of unknown origin epidemiologically linked to
exposure at a seafood and wet animal market in Wuhan (Hubei
Province, China) [1]. The cause of this pneumonia was rapidly identi-
fied as a new β-coronavirus, named Severe Acute Respiratory Syn-
drome-Coronavirus-2 (SARS-CoV-2). In January 2020, the World
Health Organization (WHO) officially coined the term coronavirus
disease 2019 (COVID-19) which rapidly became a pandemic world-
wide. As of June 9th, 2020, over 7,1 million cases of COVID-19 have

been confirmed globally (coronavirus.jhu.edu/map.html), with a 3–7%
mortality rate that largely occurs in the 20% of the cases that develop
severe disease, defined as patients with bilateral interstitial pneumonia
[2]. In these cases, respiratory failure resembling acute respiratory
distress syndrome (ARDS) is considered the leading cause of mortality
[3].

From a pathogenesis standpoint, viral infections generally trigger a
vigorous immune response that is crucial for viral clearance, with a
cascade of events involving both the innate and adaptive immune arms
in most of the cases. As COVID-19 is a new emerging disease, little is
known about the immunological changes that occur in the infected
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human host, but several reports have been published describing the
immunological alterations in patients with this condition. These range
from a maladaptive immune response and abnormal cytokine/chemo-
kine production, to hyperactivation of T cells and increased number of
activated monocytes, macrophages and neutrophils, which may ulti-
mately be associated with COVID-19 outcome [4–8].

It seems that COVID-19 shares a similar inflammatory immune re-
sponse with autoinflammatory and autoimmune conditions. Viruses not
only share immune responses with autoimmune diseases (ADs), but
they can break immunological tolerance by a variety of mechanisms
that include molecular mimicry, bystander activation and epitope
spreading [9–11]. Some examples of viruses linked to autoimmunity
and autoinflammation include enteric viruses for type I diabetes [12],
hepatitis C virus for cryoglobulinemic vasculitis and Sjögren's-like
syndrome [13,14], influenza viruses for acute disseminated en-
cephalomyelitis [15], and herpesviruses for systemic lupus er-
ythematosus (SLE), rheumatoid arthritis (RA) and adult-onset Still's
disease (AOSD) [16–18]. Nowadays, it has been already linked SARS-
CoV-2 with Guillain-Barré syndrome (GBS) [19–28], autoimmune he-
molytic anemia, immune thrombocytopenic purpura [29–35], and Ka-
wasaki disease (KD) [36–42]. In addition, the study of critically ill
patients with COVID-19 has drawn attention to an increased risk of
thrombotic events which appeared to be associated with the presence of
antiphospholipid antibodies [43–46]. In children, the appearance of
clinical manifestations resembling KD has drawn attention to a new
phenotype of autoimmunity [38], and recent estimates suggest a 30-
fold increased incidence of this disease during the pandemic [39].
Moreover, the immunomodulatory therapy widely used for ADs, its
being used for COVID-19 [47–49]. Herein, a scoping review on current
advances in the immunopathogenesis of disease as well as the auto-
inflammatory and autoimmune conditions observed during SARS-CoV-
2 infection is presented.

2. Auto-inflammatory versus autoimmune diseases

Immunological diseases are generally classified into three major
groups: autoinflammatory, autoimmune and “mixed pattern diseases”
[50]. Auto-inflammatory and ADs have several features in common
since they are both systemic inflammatory diseases involving the
muscle-skeletal system and characterized by a hyperactivation of the
immune response in genetically predisposed individuals. However,
there are some differences between the two groups. In autoin-
flammatory diseases the innate immune cells directly cause damage
whereas in ADs the innate immune system activates the adaptive im-
mune responses which are ultimately responsible for tissue inflamma-
tion [51].

From a clinical standpoint, ADs predominantly affect women and
are characterized by the activation of T cells (cellular mediated re-
sponses) or B cells (i.e., presence of autoantibodies), or both, leading to
pathology while the autoinflammatory diseases are invariably ser-
onegative and manifest fever as the most common symptom. Periodic
fever, Behçet disease, gout and AOSD are paradigmatic for autoin-
flammatory diseases while SLE, RA and SS are major examples of ADs.
A third intermediate group, named “mixed pattern diseases”, comprises
several conditions which do not completely fit with either classification;
this is the case for example of spondyloarthropathies, such as anky-
losing spondylitis and psoriatic arthritis, and inflammatory bowel dis-
eases such as Crohn's disease [52]. Increasing knowledge of these dis-
eases has revealed that the two major groups are in fact interconnected
with the “mixed pattern diseases” representing a bridge between them
as a continuum model from autoinflammation to autoimmunity [53].
Indeed, it is well known that the innate and adaptive immune system
are strongly interconnected and crucial points of connection are re-
presented by Toll-like receptors (TLR), IL-1β and inflammasome acti-
vation [54–56].

A paradigmatic example in this sense is given by the activation of
severe psoriasis flares after upper respiratory tract infections. Patients
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affected by chronic plaque psoriasis, a bona fide AD, may develop acute
flares clinically resembling the generalized pustular psoriasis, a clinical
entity with molecular features of autoinflammatory syndromes (i.e.,
deficiency of IL-36 receptor antagonist) [57]. Interestingly, in these
patients, rhinoviruses and coronaviruses have been the infectious
agents most frequently identified as triggering factors for both auto-
immune- (plaque psoriasis) and autoinflammation- (pustular psoriasis)
linked forms of the psoriatic disease [57]. The pathogenetic differences
between auto-inflammation and autoimmunity are mirrored by the
different therapeutic approaches, particularly approaches that involve
the use of biologic agents.

3. Genetic predisposition to disease

Environmental, epigenetic, and genetic factors influence autoin-
flammatory and ADs. The inner characteristics of a population may
influence the development of such conditions when they are exposed to
an infection. This explains why, despite the association of certain pa-
thogens with a specific disease, there is still a considerable group of
healthy individuals who, after exposure to a microorganism, does not
develop the disease [58].

Both HLA and non-HLA polymorphisms are associated with in-
flammatory and ADs. Polymorphisms in HLA class I and HLA class II
molecules affect which amino acids are in the peptide-binding groove

Fig. 1. Translational overview of COVID-19. Kinetics of IgM and IgG antibodies is shown. The dynamics of SARS-CoV-2 seroconversion is still under study as is the
long-term immunity. Positivity of PCR for SARS-CoV-2 could last more than 25 days after the onset of disease. About 80% of patients develop no symptoms or present
with a mild/moderate disease. Initially, infection of SARS-CoV-2 through the ACE2 receptor decreases the production of IFN type I and III, with a paradoxical
increased secretion of chemokines which stimulate migration of innate immune cells to the lungs. This process takes place in the early stages of the disease. Then,
migration of T and B cells, stimulated by chemokines, favors an increase of Th1/Th17 cytokines that perpetuate inflammation. Other cells such as neutrophils are
thought to produce NETosis which may help to increase inflammation and produce the release of cryptic antigens leading to autoimmune phenomena. *All these
markers are risk factors of progression of disease. Adapted from Ref. [4–8]. ACE2: Angiotensin-converting enzyme 2; ADE: Antibody-dependent enhancement; ARDS:
Acute respiratory distress syndrome; ASC: Apoptosis-associated speck-like protein containing a CARD; CCL: Chemokine (C–C motif) ligand; CRP: C reactive protein;
CXCL: chemokine (C-X-C motif) ligand; ESR: Erythrocyte sedimentation rate; ICU: Intensive care unit; Ig: Immunoglobulin; IFN: Interferon; IL: Interleukin; IP10:
Interferon-inducible protein 10; LDH: lactate dehydrogenase; NAbs: Neutralizing antibodies; NK: Natural killer; PCR: Polymerase chain reaction; PCT: Procalcitonin;
RNA: Ribonucleic acid; MIP1α: Macrophage inflammatory protein 1α; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; Th: T helper; TMPRSS2:
Transmembrane protease serine 2; TNF: Tumoral necrosis factor.
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and thus their binding specificity. In general, foreign antigens presented
by class I molecules are derived from intracellular infections caused by
viruses, or from proteins synthesized in the cytosol [58]. A small study
in a Han population suggested that HLA-C*07:29 and B*15:27 alleles
may be associated with COVID‐19 [59]. The first genome-wide asso-
ciation study in a European population, published as a preliminary
report, showed that carriers of ABO A-positive group were at a 45%
increased for respiratory failure, while individuals with blood group O
were at a 35% decreased risk for respiratory failure [60]. In addition, a
cluster of genes that could be relevant to the development of severe
COVID-19 was identified on chromosome 3p21. One of these genes,
SLC6A20, encodes a transporter protein that interacts with angiotensin-
converting enzyme 2 (ACE2), the SARS-CoV-2 receptor required for cell
entry [60].

Host-pathogen interactions are vital to the understanding of in-
fectious disease, as well as its treatment and prevention. In this sense,
considering the genetic variation at the genome of SARS-CoV-2 (www.
gisaid.org) will contribute to the knowledge of SARS-CoV-2 pathogen-
esis [61].

4. SARS-CoV-2 infection and the innate immune response

Lineage B coronaviruses, which include SARS-CoV and SARS-CoV-2
interact with the host receptor ACE2 for viral entry. The interaction is
mediated by the receptor binding domain (RBD) region within the spike
protein (S) of the virus, the latter common to all β coronaviruses. The
ACE2 receptor is expressed in the lungs, small intestine, testis, kidneys,
heart, thyroid, adipose tissue, brain, blood vessels, and muscle [62–65].
After viral-receptor fusion in both SARS-CoV and SARS-CoV-2 infec-
tions, host proteases (such as transmembrane serine protease 2
(TMPRSS2) [66], endosomal cysteine proteases, cathepsin B and L)
cleave the S protein of the virus leading to the release of the spike-
fusion peptide which enables intracellular virus entry. Zang et al. [67],
have shown that besides TMPRSS2, TMPRSS4 present in gut epithelial
cells also contributes to enhance the localized tissue infectivity of SARS-
CoV-2 (Fig. 1) [4–8].

Reduction in percentages of some innate immune cells may play an
important role in COVID-19. Low eosinophil count has been suggested
as a poor prognostic marker in COVID-19 patients, although the precise
mechanisms remain unknown. Du et al. [68], described 85 fatal cases of
COVID-19 with 81% of the patients having very low eosinophil count at
admission. Additionally, other reports showed that low eosinophil
count was less frequent in survivors of severe COVID-19 and in non–-
severe patients [69], than in a small cohort of recovering patients [70]
confirming the potential association of low eosinophil count and poor
prognosis.

Reduced percentages of circulating natural killer (NK) cells have
also been reported [71], as well as an increased expression of their
inhibitory receptor NKG2A that likely contributes to their reduced cy-
tolytic activity [72]. Moreover, bronchoalveolar lavage fluid tran-
scriptome from COVID-19 patients revealed an increase in dendritic
cells (DCs) and activated neutrophils [73]. Higher percentages of in-
flammatory monocytes have been recorded in patients with severe lung
pathology [74].

Several studies have shown a torrent of pro-inflammatory cytokines
(Table 1) [74–85]. It is quite possible that much like SARS-CoV and
Middle East Respiratory Syndrome (MERS)-CoV, SARS-CoV-2 could
induce a delayed type I IFN response with a loss of viral control during
the early stage of infection [86]. Blanco-Melo et al. [76], showed in
animal models and select patients with COVID-19 that reduced type I
and III IFN are associated with subsequent failure in the control of virus
replication. This phenomenon was observed at initial stages, i.e., the
first 7 days post-infection with a paradoxical increased production of
chemokines such as CXCL17, CXCL16, CXCL9, CXCL8. These chemo-
kines may enhance migration of additional innate cells, such as
monocytes, macrophages and neutrophils. Decreased production of Ta
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type I and III IFN is maintained during the late stages of disease (14
days post infection), accompanied by increased production of pro-in-
flammatory cytokines such as IL-6, IL-8, and TNF-α.

Other cells involved in COVID-19 disease are the pulmonary en-
dothelial cells (ECs). These cells may be associated with the develop-
ment of pulmonary complications such as ARDS due to the modification
of vessel barrier integrity, promotion of the pro-coagulative state, and
dysregulation of inflammatory cells infiltration secondary to vascular
inflammation (i.e., endothelialitis). ECs have an important role in ARDS
and multi-organ failure, therefore therapeutic strategies related to these
cells should be studied [87]. In fact, van de Veerdonk et al. [88], have
proposed that pulmonary edema in COVID-19 is caused by activation of
bradykinin 1-2 receptors on ECs. Therefore, inhibiting kallikrein ac-
tivity could prevent ARDS.

5. SARS-CoV-2 infection and the adaptive immune response

Lymphopenia can be caused by viral infections and is commonly
found in autoinflammatory and ADs [89]. In physiological conditions, T
cells undergo homeostatic proliferation following episodes of lympho-
penia induced by infectious agents, to restore their population in the
peripheral blood [90], and this proliferative capacity correlates with
their avidity for self-antigens. Several hypothetical mechanisms could
explain lymphopenia in COVID-19 patients: 1) lymphocytes express
ACE2 and these die due to viral infection, 2) virus directly destroy
lymphatic organs that includes destruction of lymphoid cells, 3) the
generation of cytokine storm may lead to lymphocyte apoptosis or
block of lymphopoiesis [91], 4) metabolic alterations induced by the
virus infection leads to the generation of molecules that result in lym-
phoid cell depletion [92] and finally, 5) lymphopenia could also reflect
differences in lymphocyte homing into tissues out of the peripheral
blood.

Studies on the changes in lymphocyte subsets demonstrated reduced
percentages of CD4+ and CD8+ T cells as well as B cells in peripheral
blood, especially in patients with severe disease [71]. A lymphopenic
state could lead to failure in the maintenance of peripheral tolerance
that leads to the activation of effector T cells with autoimmune po-
tential. This mechanism of loss of self-tolerance highlights the para-
doxical association between lymphopenia and autoimmunity [93]. Such
a scenario is supported by the speculation forwarded previously that a
temporary lymphopenia induced by viral infections might trigger au-
toimmunity [94].

After infection occurs, CD4+ T cells are activated in secondary
lymphoid organs followed by their migration into the inflamed tissue.
After pathogen clearance, the majority of these cells undergo apoptosis
but a small population remains, becoming long lived memory cells, able
to respond more effectively and rapidly during a subsequent infection
[95]. This phenomenon is known as immunological memory and can be
a double-edge sword. When these memory cells are formed against self-
antigens, in fact, they are implicated in autoimmune flare ups [96].

According to preliminary published data, COVID-19 critical patients
express decreased percentages of T helper memory and regulatory T
cells in the blood compared to patients with less severe disease [71].
These findings raise unsolved questions. Is the loss of these cell subsets
due to their selective trafficking to the lung, or is it because they are
specifically targeted by the virus? More detailed studies about the
phenotype of T cells in COVID-19 patients showed that both, CD4+ and
CD8+ T cells express higher levels of the T cell activation markers (e.g.,
CD38 or CD44) [97]. Of interest, CD44 is an adhesion molecule in-
criminated in the pathogenesis of a variety of ADs, and has been pro-
posed as a biomarker of disease and disease activity for SLE [98].

Evaluation of patients at the intensive care unit (ICU) disclosed an
increase of OX40 expressing CD4+ T cells, and CD137 expressing CD8+

T cells [74]. OX40 is known to promote T cell cytokine production [99]
while CD137, a member of the TNF receptor family, is a potent costi-
mulatory molecule for activated T cells preferentially involving

cytotoxic CD8+ T cells and CD8 memory cells [100]. Additional phe-
notypic studies showed an increased concentration of highly pro-in-
flammatory CCR6+ Th17 cells and a reduction in the number of
CD28+ cytotoxic suppressor T and regulatory T cells [71,101]. It is
possible that a finding of sustained decrease in the CD8+ T cell subset
(lack of viral clearance by secretion of perforin, granzymes, and IFN-γ)
could serve as an independent predictor of COVID-19 severity [102].
Reduction of regulatory T cells and over activation of T cells, mani-
fested by increase of Th17 and high cytotoxicity of CD8+ T cells are
described in several autoinflammatory/ADs and the Th17 subset is
known to be highly pro-inflammatory and is implicated in the patho-
genesis of multiple autoinflammatory/autoimmune conditions. The
balance between these two cell populations is critical for health
[103,104].

Two less obvious pathways that are altered in COVID-19 include IL-
7 and p53. First, an increased expression of IL-7 has been reported in
peripheral blood during COVID-19. IL-7 is a hematopoietic growth
factor secreted by stromal cells in the bone marrow and DCs, which
stimulates the differentiation and proliferation of all cells of the lym-
phoid lineage. Increased IL-7 in severe COVID-19 disease may represent
an attempt to counteract SARS-CoV-2-induced lymphopenia. Second,
Xiong et al. [105], found upregulation of pathways associated with
apoptosis, autophagy, and p53 in peripheral blood mononuclear cells of
COVID-19 patients. Some studies reported that lymphopenia might be
related to mortality [106]. Lymphopenia was also found in MERS pa-
tients. MERS-CoV can directly infect human T cells and induce their
apoptosis without a requirement for virus replication [107]. SARS-CoV-
2 can similarly infect T cells, but not replicate within them. However
whether this virus induces T cell apoptosis needs further investigation
[108]. Furthermore, in COVID-19 a higher expression of PD1+Tim3+
T cells and an increased expression of NKG2A by CD8+ T cells have
been observed, indicating that SARS-CoV-2 virus induces T cell ex-
haustion in COVID-19 patients [72,79].

Concerning B cells, a case report from Australia first described the
kinetics of antibody responses in COVID-19 [109]. Immunoglobulin M
(IgM) and immunoglobulin G (IgG) antibodies that bound SARS-CoV-2
virus were detected in blood before symptomatic recovery. These im-
munological changes persisted for at least 7 days following full re-
solution of symptoms [109]. In a small report, sera from 5 COVID-19
patients were able to neutralize SARS-CoV-2 in vitro suggesting a pos-
sible disease-suppressive humoral response [110]. A more recent study
investigated the diagnostic potential of serological ELISA-based tests in
85 patients with confirmed COVID-19 and 24 suspected patients. This
study showed that IgM and IgG antibodies against SARS-CoV-2 can be
detected as early as day 4 post infection with readily detectable IgG
antibodies by day 11 and ongoing post infection. These serological tests
thus appear to be reasonably sensitive and have a good specificity for
COVID-19 diagnosis. The IgG seropositive rate decreased at 28 days
after disease onset, however the sample numbers tested (n = 7) were
small and the results await confirmation [111].

Long et al. [7], by using a magnetic chemiluminescence enzyme
immunoassay reported that seroconversion for IgG and IgM may occur
simultaneously or sequentially. In their sample, 12.2% of the patients
reached a plateau in IgG titer within 7 days of symptom onset [7]. More
recently, Xu et al. [112], by using the same method, confirmed this
result which suggest that “the value of IgM as an early marker for the
acute phase of SARS-COV-2 infection might not be on par with that in
other viral infection diagnostics”. The lack of similar methods and
standardization precludes comparability among the studies.

Fafi-Kremer et al. [113], carried out a serological study in patients
with mild SARS-CoV-2 infection, asserting that 80% of the population
present subclinical or mild COVID-19. The authors showed that 13 days
post-disease onset, 99% of the patients had antibodies against SARS-
CoV-2-S protein and 97% of the patients had neutralizing antibodies
one month after disease onset. Interestingly, neutralization capacity
correlated with antibody levels [114,115]. Although recovered patients
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from COVID-19 without hospitalization and mild disease have low le-
vels of NAbs, they do have potent antiviral activity and persist up to 40
days after symptoms onset [113,116]. The identification of anti-SARS-
CoV-2 antibodies in recovered patients, which can bind and neutralize
the virus, supports the use of convalescent plasma (CP), as a therapeutic
approach of artificial passive immunity [113,117]. Up to now, there are
several reports that confirm that NAbs against RBD can interrupt the
interaction between SARS-CoV-2 and ACE2, thus controlling the in-
fection [115,118].

Even though anti-viral neutralizing antibodies are important for the
viral clearance, some authors are questioning if the presence of a pre-
mature humoral response against SARS-CoV-2 might be harmful.
Previous studies in SARS-CoV animal models showed that antibodies
against the spike protein (anti-S-IgG) shares the capability to cause
severe lung injury by interfering with the inflammatory response, by
promoting pro-inflammatory monocyte/macrophages accumulation
and their release of the pro-inflammatory cytokine IL-8 [119]. Based on
these observations, it has been speculated that SARS-CoV-2 shares a
similar inflammatory response, with antibody-mediated lung damage
through skewing of macrophages or through complement activation
and antibody-dependent cell-mediated cytotoxicity mechanisms [120].

Although the safety of CP based therapies is still under

investigation, recent and strong evidence suggest that this therapy is
safe and could offer high rates of efficacy in COVID-19 (i.e., reduction
of viral load, increase in neutralizing antibodies and improvement of
clinical status) [121]. A study of 5000 patients showed that less than
1% of patients presented major adverse events such as transfusion-as-
sociated circulatory overload, transfusion-related acute lung injury,
and/or severe allergic transfusion reactions [122]. In addition, the
adverse events mechanisms associated with CP infusion suggest that
they are similar to intravenous immunoglobulins (IVIG), which include
anti-idiotype reactions, neutralization of complement and in-
flammatory cytokines, and reduction of migration of T and B cells, as
well as macrophages [121].

6. Cytokine storm syndrome (CSS)

Several studies have now documented the presence of significantly
high plasma levels of cytokines and chemokines in patients with
COVID-19. Such chemokines recruit lymphocytes and leukocytes to
sites of infection and include IL-1β, IFNγ, IFNγ-inducible protein (IP10),
and monocyte chemotactic protein (MCP)-1 each of which are elevated
in COVID-19 compared to healthy subjects (HS), suggesting an acti-
vated Th1 cell response (Fig. 1). In patients requiring ICU admission,

Fig. 2. Clinical manifestations in the cytokine storm syndrome. This condition is considered as a common end point of different initial insults: infectious,
autoimmune/inflammatory, and iatrogenic. Patients with CSS exhibit a plethora of signs and symptoms that compromise several systems. These manifestations
resemble those encountered in patients with COVID-19. CSS: Cytokine storm syndrome; CRP: C reactive protein; ESR: Erythrocyte sedimentation rate; PaO2: Partial
pressure of oxygen in arterial blood; PaCO2: Partial pressure of carbon dioxide.
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higher concentrations of G-CSF (granulocyte colony-stimulation factor),
IP10, MCP-1, macrophage inflammatory proteins (MIP)-1α, IL-2, IL-7,
IL-10 and TNFα, have been detected compared to patients not requiring
ICU admission. In the same study, IL-6 plasma levels were significantly
higher in ICU patients compared to HS but not compared to non-ICU
patients [123].

Several cytokines are involved in Th17-type responses in COVID-19.
IL-1β and TNFα promote Th17 responses. Along with Th1, Th17-type
response contributes to high levels of pro-inflammatory cytokines in the
context of a CSS [124].

CSS are a group of disorders representing a variety of inflammatory
etiologies with the final common result of overwhelming systemic in-
flammation, hemodynamic instability, multiple organ dysfunction, and
potentially death. CSS is not a disease itself, but rather the common end
point of different initial insults: infectious, autoimmune/inflammatory,
and iatrogenic [125]. The hemophagocytic syndromes hemophagocytic
lymphohistiocytosis (HLH) and macrophage activation syndrome
(MAS) represent two clinically similar CSS with an unknown degree of
overlap and pathophysiology. The clinical presentations of all CSS can
be strikingly similar, creating diagnostic uncertainty [125].

In a report from 150 patients with mild symptoms or severe disease,
IL-6 was found to be significantly higher in the latter group and possibly
predictive of mortality [3]. In some patients, increased levels of IL-10
and IL-4 have also been reported, suggesting that a Th2 response is also
initiated (Table 1) [126]. This line of evidence suggests that the most
severe subgroup of patients might experience a CSS, elsewhere defined
as a systemic inflammatory response that can be triggered by a variety
of factors such as infections and certain drugs. CSS is characterized by a
variety of symptoms including both mild, flu-like symptoms and severe
life-threatening manifestations such as ARDS, because of the released of
high levels of pro-inflammatory cytokines (Fig. 2).

In the last few years, this condition has become of great interest
especially among oncologists, since it represents an important adverse
event following chimeric antigen receptor (CAR)-T cell immunotherapy
for cancer [127]. The understanding of CSS pathophysiology is largely
incomplete, but a model has been proposed in which the target cell lysis
induces the T cell activation and cytokine release (Fig. 3) [128], while
innate immune cells are also activated with further cytokine produc-
tion.

IL-6 seems to play a dominant role in CSS, since high levels of IL-6
can activate the coagulation pathway and vascular endothelial cells and
inhibit myocardial function [129]. Indeed, elevated IL-6 levels are ob-
served in patients with CSS and important beneficial effects of IL-6
blockade by tocilizumab (an anti-IL-6 receptor antibody) are achieved
in patients with CSS induced by CAR-T cell therapy [129]. Tocilizumab,
which is widely used to treat RA and giant-cell arteritis, was first used
in China in 21 COVID-19 patients in critical conditions with remarkable
improvements [130]. Since this first report, IL-6 blockade strategy has
been applied to treat other COVID-19 patients, including Italian pa-
tients in different areas of the country, with promising preliminary
results.

A phase II clinical trial, investigating the efficacy and tolerability of
tocilizumab in patients with COVID-19 pneumonia, has been completed
and results await data analyses [131]. Given the condition of hyper-
inflammation found in these patients, selective inhibition of other pro-
inflammatory cytokines such as IL-1β signaling by therapeutics such as
anakinra or canakinumab has also been suggested [132]. Giamarellos-
Bourboulis et al. [133], published an interesting study indicating that
patients with COVID-19 and severe respiratory failure may present with
a condition similar to MAS, driven by IL-1β, or to an immune dysre-
gulation, driven by IL-6. These data provide support and the rationale
for clinical trials of anakinra or tocilizumab, respectively, as therapeutic
strategies for COVID-19 patients experiencing CSS.

In addition, the CSS may trigger the activation of auto-reactive T
and B cells in autoimmune susceptible individuals, a phenomenon
known as bystander activation which occurs when CD8+ T, CD4+ T, or

B cells are activated in an antigen-independent manner [11]. Viral in-
fections such as cytomegalovirus, Epstein-Barr virus, and hepatitis B
virus are examples of infectious agents that appear to recognize viral
epitopes that mimic self-epitopes, and trigger bystander activation via
this mechanism [11]. Although there is no evidence regarding this issue
in COVID-19, the disproportionate inflammatory response associated
with SARS-CoV-2 may explain the appearance of autoimmune phe-
nomena in the end-stages of the disease, including neurological and
coagulopathy manifestations (Fig. 2).

Some patients with prior autoimmune and autoinflammatory con-
ditions infected with SARS-CoV-2 have shown better outcomes may be
due to baseline immunomodulatory medications. Some reports have
shown that patients with ADs with prior treatment with hydroxy-
chloroquine, TNFα antagonists [134], Anakinra [135], or Tocilizumab
[136], may develop a mildest SARS-CoV-2 infection. These phenomena
could be associated with a better control to COVID-19, and it may
suggest that these medications, used chronically, decrease the severity
of this infection. However, further analyses are warranted in which
other factors associated with COVID-19 severity are included.

In contrast, those patients treated with Rituximab [137], or Secu-
kinumab appeared to have worst outcome defined by a higher rate of
ICU admissions [138]. Those patients treated with Rituximab and Se-
cukinumab exhibited high concentrations of IL-6, suggesting that these
medications failed to modulate IL-6 which has been strongly associated
with mortality in COVID-19 [138]. In addition, CD20 blockers could
impair B cells function hindering the production of NAbs against SARS-
CoV-2 [138].

Since patients with ADs are prone to infections [58], a major con-
cern is the possibility of a high rate of infection of SARS-CoV-2 in them.
Emmi et al. [139], found an estimated frequency of 0.22%
(0.01–1.21%) SARS-CoV-2 infections in their cohort of Italian patients
with ADs which was comparable to that observed in the general po-
pulation. In another study in patients with autoimmune liver conditions
(i.e., autoimmune hepatitis and primary biliary cholangitis), authors

Fig. 3. Cytokine network in the cytokine storm syndrome. IFNγ has been
recognized as a common mediator of inflammation in CSS, especially in MAS.
The production of IFNγ is stimulated by IL-1β, IL-18, and IL-33, which are as-
sociated with inflammasome response and play a critical role in inflammation
via NK and T cells. IL-6 has been suggested as the central role of CSS. In ad-
dition, high levels of IL-10 are thought to be an unsuccessful attempt to com-
pensate inflammation induced by the inflammasome activation. Adapted from
Ref. [128]. CSS: Cytokine storm syndrome; IFN: Interferon; IL: Interleukin;
MAS: Macrophage activation syndrome; NK: Natural killer; TNF: Tumoral ne-
crosis factor.
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did not find an increased frequency of cases of SARS-CoV-2 [140].
These results should be evaluated with caution. First, health systems

worldwide have recommended that those patients with chronic condi-
tions including ADs must avoid physical contact. These recommenda-
tions could influence the risk of SARS-CoV-2 infection and may bias the
estimate of its prevalence in ADs. Second, as discussed above, patients
with autoimmune and autoinflammatory conditions could exhibit a
mild COVID-19. This scenario may influence the rate of clinical con-
sultation by these patients, since most of infected individuals only visit
clinical settings in situations of a severe disease or flares. Therefore, the
questions about the risk and prevalence of COVID-19 in patients with
inflammatory and ADs remains open.

7. Macrophage activation syndrome versus autoimmunity

MAS is seen most frequently in children with systemic juvenile
idiopathic arthritis and in its adult equivalent, AOSD. However, it is
increasingly reported in other rheumatic disease of childhood, in-
cluding pediatric SLE, KD, juvenile dermatomyositis, and antipho-
spholipid syndrome (APS) [141]. Episodes of MAS appear to be most
commonly triggered by infections, particularly viral infections, or
during periods of high disease activity including the period of disease
onset [141].

The immune response to viruses depends on the sophisticated bal-
ance and the coordinated function of several cell types and cytokines,
encompassing both the innate and adaptive arms of the immune system.
If the immune response is not successful in eliminating the virus, it
continues to stimulate the inflammatory response with the potential to
lead to the development of immunologically-mediated disorders [142].
As previously reported, patients with COVID-19 express higher levels of
pro-inflammatory cytokines, considered the major contributors of lung
damage. Moreover, this cytokine profile in COVID-19 patients is re-
sponsible for the hyperinflammatory syndrome with unremitting fever,
cytopenia, hyperferritinemia, disseminated intravascular coagulation
and multiorgan failure, including ARDS [143]. As mentioned, this
syndrome is often associated with auto-inflammatory conditions and
ADs, and can be triggered by infections [144]. The pathophysiology of
MAS is still not completely elucidated, but a defect in lymphoid cell
cytolytic activity has been hypothesized. A combination of genetic
predisposition and a pro-inflammatory milieu, including the presence of
IL-6 and IL-1β, may decrease cytolytic functions of NK cells and CD8+ T
cells, with the consequent inability to lyse active antigen presenting
cells or infected cells [75]. This results in an inflammatory cytokine
storm leading to macrophage activation, hemophagocytosis and multi-
organ failure [145]. It is likely that in genetically predisposed in-
dividuals, SARS-CoV-2 infection may trigger the occurrence of such a
phenomenon. As mentioned, both a cytokine storm and a reduced cy-
tolytic function of NK cells and CD8+ T cells have been reported in
COVID-19 patients [72].

With regards to the role of specific cytokines, IL-1β and IL-6 are
known to suppress regulatory T cells functions allowing unchecked
adaptive autoimmune response [146,147]. These cytokines are also
involved in the pathogenesis of several autoinflammatory and ADs,
such as AOSD [148] and RA [149]. Moreover, IL-6 induces natural
regulatory T cells to acquire characteristics of the Th17 cells in a TGF-β-
dependent manner, with resultant enhanced pro-inflammatory activity
[150]. These above-mentioned cytokines represent a Th1 response,
notably pro-inflammatory, while cytokines such as IL-4 or IL-10 re-
present a Th2 response. Th2 cells initially have been described as anti-
inflammatory, but a number of reports established a role for Th2 cells in
tissue inflammation. Of note, several autoimmune conditions are Th2-
driven (e.g., SLE) [151]. The promising results obtained by IL-6R
blockers suggest that a Th1 response is predominant in the im-
munopathology of COVID-19 [130].

In summary, it is tempting to speculate that a pathophysiological
model resembling AOSD might characterize COVID-19. In AOSD, an

environmental trigger, possibly an infectious agent, leads to the in-
duction of danger signals, activating a dysregulated Nod-like receptor 3
(NLRP3) inflammasome, which promotes release of IL-1β and IL-18 and
Th1 polarization, with subsequent TNFα and IL-6 production.
Contextually, the virus triggers activation of TLR7 and Th17 pro-
liferation together with neutrophil recruitment [152]. TLR7 is mainly
expressed by plasmacytoid DCs (pDCs), B cells, and to a lesser extent by
macrophages. The TLR-7-MyD88 pathway is overexpressed in pDCs of
AOSD compared to healthy individuals [153], and changes in the
NLRP3 inflammasome could be involved in AOSD pathophysiology.
However, no polymorphism in the NLRP3 gene have so far been iden-
tified, thus a reduced threshold of activation or a deregulation of the
inflammasome have been hypothesized [154]. A similar condition may
explain the devastating inflammatory response in the most severe
COVID-19 patients. Moreover, IL-6 stimulates the liver synthesis of
ferritin and IL-18 triggers NK cell-mediated IFNγ production, which
promotes macrophage activation with possible onset of MAS (Fig. 3)
[128,155].

8. Gender differences in COVID-19

Gender differences are recognized in many diseases and are gen-
erally manifest by changes in the clinical course, symptoms, therapy-
response and clinical outcome. These differences are more striking for
ADs [156]. It is well known that there is a very high gender bias to-
wards females for systemic ADs such as SLE and SS (9:1 female/male
ratio) while a few other immunological diseases, such as ankylosing
spondylitis, are more prevalent in males [157].

Gender however not only influences the prevalence of these con-
ditions but also the severity of symptoms and the degree of disability.
Indeed, some studies describe SLE as a more severe disease in men
compared to women [158], while women affected by axial spondylar-
thritis tend to have a greater disease activity and a lower quality of life
compared to men [159]. The background for these gender-related dif-
ferences is not completely elucidated but seems to be the result of a
complex interaction between sex hormones, (epi-)genetics, and the
composition of gut microbiota [160], all of which have immunological
consequences. Overall, the female immune system has a higher re-
activity with enhanced ability to produce antibodies, a stronger ability
to mount a type I IFN response and also an increased antigen presenting
activity by monocytes, while men are more susceptible to infections,
with an increased inflammatory response to infectious pathogens [161].
Interestingly, estrogen was found to exert inhibitory effects on IL-6
production [162,163], suggesting it can directly hamper the COVID-19
related cytokine storm in females.

Some of these characteristics may be also responsible for the gender
disparities reported for COVID-19 severe cases. In both China and Italy,
the rate of infection among males and females was similar, but the
death rate among males was much higher compared to females [164].
Indeed, a study from China reported that while men and women have
the same prevalence for SARS-CoV-2 infection, men are more at risk for
worse outcomes and death, independent of age [165]. The precise
mechanism(s) that lead to such disparate outcomes remain to be de-
fined although underlying health status and comorbidities (i.e., cardiac
disease, obesity, among others) have been opined as contributory fac-
tors.

9. SARS-CoV-2 reinfection

The risk of reinfection is currently being analyzed in patients with a
history of COVID-19. Animal models have been useful to clarify the risk
of reinfection of different coronaviruses. A ferret model of reinfection
was used. In acute SARS-CoV infection, the innate immune response
was mainly led by the production of IFN. The symptomatic ferret pre-
viously reinfected or vaccinated lacked IFN antiviral response. This
indicates that a likely modification in the initial response of IFN could
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influence future reinfections [166]. However, in a follow-up study in
Rhesus macaques previously infected with SARS-CoV-2, no cases of
reinfection were documented [167]. The presence of viral replication in
the nasopharynx and anus was evaluated on different days, without
finding viral activity. On the other hand, investigations in African green
monkeys described the immune response associated with elimination of
SARS-CoV and the persistence of lung inflammation, even after having
eliminated the virus [168]. In this sense, after a period of reinfection,
the viral clearance was faster; however, the lung inflammation lasted a
few more days, so it is not ruled out that the persistence of a long-term
“protective” humoral immune response may be associated with pre-
vious disease severity.

Although possible cases of reinfection in humans have been sug-
gested, the presence of a second SARS-CoV-2 positive PCR does not
necessarily mean viral activity and infectious capacity. It should be
noted that PCR-based diagnosis does not reveal the presence of live and
replicating viruses, merely the presence of viral RNA. Therefore, a po-
sitive PCR test should be evaluated within this context [169]. After the
SARS-CoV infection disease, a longitudinal study was carried out in 176
patients previously infected, in order to evaluate the duration of anti-
bodies. The authors showed that the levels of IgG antibodies were
maintained for 2 years, and after 3 years after disease onset, these
antibodies were drastically reduced [170]. Despite this, it is relevant to
consider other factors associated with the durability of protective an-
tibodies against infection, including age, and the presence of previous
infections. Antibodies to coronaviruses are higher in older compared
with younger adults and binding antibodies are more sensitive than
neutralizing antibodies in identifying coronavirus‐associated illnesses
[171].

The Korean Centers for Disease Control and Prevention carried out
an epidemiological analysis of 285 positive cases and 790 contacts. The
“re-positive cases” were renamed as “re-detected PCR” because neu-
tralizing antibodies and negative viral cultures were documented [172].
Therefore, there is a low risk of reinfection. In addition, the immune
memory response against SARS-CoV-2, caused by cross-reactivity upon
previous exposure to other Human-CoV virus must be considered [171].

Detection of viral RNA after recovery does not necessarily indicate
infectivity. The infectivity of the virus depends on the presence of the
complete virus, not only on its RNA. Therefore, prolonged positive re-
sults may reflect only the lack of complete removal of nucleic acid from
tissues [173]. Bullar et al. [174], showed that there was no growth in
the samples with cycle threshold value (Ct) > 24 or symptom onset to
analyze > 8 days. Therefore, the Ct indicated by the RT-qPCR test
should be used as a reliable tool, in terms of predicting infectivity, and
to define the maximum transmission risk period. These findings require
further tests of cell infectivity in culture to demonstrate that RT-PCR
positivity persists significantly beyond infectivity.

10. Autoimmunity in COVID-19

Potential mechanisms explaining the link between autoimmunity
and COVID-19 include molecular mimicry and bystander activation
[10,11]. The former occurs when similarities between foreign and self-
peptides favor an activation of autoreactive T or B cells by foreign-
derived peptides in a susceptible individual [10]. The SARS-CoV-2
proteome was described as sharing three sequences of six amino acids
(GSQASS, LNEVAK, and SAAEAS) with three proteins, namely DAB1,
AIFM, and SURF1 which are present in the brainstem respiratory pa-
cemaker, also known as the pre-Bötzinger complex [175]. The authors
suggested that these partial but not complete similarities might account
for an autoimmune mediated respiratory central depression. Kanduc
et al. [176], found that SARS-CoV-2 shared pentapeptides with pul-
monary surfactant and related proteins that may account for auto-
immune directed pulmonary damage. Moreover, a recent report has
shown that SARS-CoV-2 spike protein antibody and tissue proteins such
as transglutaminase 3, transglutaminase 2, ENA, myelin basic protein,Ta
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mitochondria, nuclear antigen, α-myosin, thyroid peroxidase, collagen,
claudin 5 + 6, and S100B have strong immune cross-reactions [177].
This may suggest that autoimmunity via molecular mimicry in suscep-
tible individuals is likely and could explain some autoimmune-like
manifestations encountered in COVID-19 patients.

10.1. Antiphospholipid syndrome and autoimmune cytopenia

Throughout the SARS-CoV-2 pandemic, autoimmune phenomena,
mainly hematological ADs, have been documented (Table 2)
[19–35,37–39,41–46]. Among the most relevant is the case of a 65-
year-old woman with a history of autoimmune hypothyroidism (i.e.,
Hashimoto's thyroiditis), who was diagnosed with COVID-19. On day 4
of admission, the patient presented purpuric lesions in the lower ex-
tremities, associated with epistaxis and, subsequently, subarachnoid
hemorrhage with a platelet count of 16.000. Although no anti-platelet
antibodies were documented, patients positively responded to IVIG
[29]. In addition, a case series of 7 patients who developed autoimmune
hemolytic anemia during the COVID-19 infection, specifically during
the cytokine storm phase, was described [30]. The presence of a posi-
tive, direct anti-globulin test, anti-erythrocyte antibodies (warm anti-
bodies in 4 cases), and cold agglutinins in 3 cases support the link be-
tween coronavirus infection and autoimmunity [30]. A case of
simultaneous presentation of COVID-19 and autoimmune hemolytic
anemia was reported. This disease should be considered in patients with
COVID-19 and severe anemia [31]. Another case of immune thrombo-
cytopenia was reported in a 41-year-old male patient with COVID-19,
who debuted with nasal bleeding, and purpuric rash. Patient presented
a mild COVID-19, as well as the thrombocytopenia. Interestingly, pa-
tient was managed with IVIG presenting an adequate clinical response
[32].

A high risk of coagulopathy has been observed in patients with
COVID -19. Interestingly, some tested positive for antiphospholipid
antibodies indicating an APS-like condition. Zhang et al. [43], de-
scribed 3 patients diagnosed with COVID-19 who had comorbidities
and were critically ill. One of the patients had bilateral lower limb
ischemia, ischemia in 2 fingers on the left hand, and multiple strokes.
Thrombocytopenia and prolonged clotting times were documented with
positive antiphospholipid antibodies (i.e., IgA and IgG anti-cardiolipin
and anti-β2-glycoprotein antibodies). The other two patients presented
a similar clinical course associated with antiphospholipid antibodies.
Lupus anticoagulant was negative in all three patients [43].

Helms et al. [46], evaluated 150 patients managed at the ICU by
ARDS associated with COVID-19. Up to sixty-four thrombotic events
were observed, including pulmonary embolism, deep vein thrombosis,
cerebral ischemic attack, mesenteric ischemia and others. In addition,
the presence of D-dimer and fibrinogen were strongly elevated. On the
other hand, coagulation factors such as von Willebrand factor, von
Willebrand factor antigen and coagulation factor VIII were altered.
Regarding the immunological profile, most of the patients had a posi-
tive lupus anticoagulant. When compared with Non-COVID-19 ARDS
patients, the former COVID-19 ARDS patients presented a greater
number of thrombotic events. It is highlighted that this high number of
patients presented these thrombotic events despite anticoagulant
management. These phenomena could be secondary to high levels of
fibrinogen, associated with inflammation. However, an autoimmune
origin associated with antiphospholipid antibodies deserves to be con-
sidered.

Moreover, Harzallah et al. [44], documented 56 patients diagnosed
with COVID-19, of whom 25 were positive for lupus anticoagulant and
5 for anti-cardiolipin or anti-β2-glycoprotein. Along the same line,
Bowles et al. [45], described the presence of lupus anticoagulant in 31
patients, of whom 2 developed thrombotic events. Although such an-
tibodies could be present in acute infections, their association with
thrombotic events is rare. Thus, the role of these autoantibodies in
thrombo-embolic manifestations during severe SARS-CoV-2 infections

should not be underestimated. As has been made evident in patients
with catastrophic APS, autoantibody positivity is not strictly necessary
for diagnosis since it may be present in clots from patients with ongoing
thrombosis [178]. Therefore, it is plausible to hypothesize that some
critically ill patients with thrombotic events could be negative for these
autoantibodies. Therefore, antiphospholipid antibodies, including lupus
anticoagulant, should be routinely evaluated in patients with COVID-19
as a risk marker of thrombotic events.

Raucci et al. [179], have shown the potential association of IL-17A
in patients with COVID-19 that manifested thrombotic and vascular
events. A recent classification for dermatological manifestations in-
cluded livedo reticularis and necrosis as the fifth most common der-
matological expression in COVID-19, presenting in about 6% of the
patients, supporting the notion of an APS-like phenotype in these sub-
jects [180].

10.2. Kawasaki disease

KD is an acute, self-limiting vasculitis, which mainly affects
boys < 5 years. The main symptoms include, fever, conjunctivitis, er-
ythema in oral mucosa, cervical lymphadenopathy, and polymorphic
rash (Fig. 4) [181]. KD may also involve cardiovascular, gastro-
intestinal, pulmonary, neurological, genitourinary and musculoskeletal
systems [182]. An early innate immune response has been described,
associated with a high number of neutrophils, and release of TNF, IL-1,
and IL-6 [183]. In the first week, after the onset of fever, the presence of
regulatory T cells and pro-inflammatory CD4+ T cells, and CD8+ T cells
have been observed [184].

Although the etiology of the disease is not clear, the main trigger
seems to be infectious [185]. There has been a notable increase in the
number of KD cases during the pandemic [38,39], suggesting an asso-
ciation between SARS-CoV-2 and this condition. To date, children
continue to be the most affected. Additionally, main cases of incomplete
KD have been described, together with a high rate of cardiac compli-
cations (Fig. 4) [36–42]. As reviewed by Son [186], “this condition is
referred to variously as the pediatric multisystem inflammatory syn-
drome temporally associated with covid-19 (PIMS), the multisystem
inflammatory syndrome in children and adolescents temporally related
to COVID-19, and the multisystem inflammatory syndrome in children
(MIS-C) associated with COVID-19”.

Riphagen et al. [38], reported an increase in the number of cases of
children with hyperinflammatory shock with clinical characteristics
resembling KD. They were 8 previously healthy children with fever,
peripheral edema, gastrointestinal symptoms, conjunctivitis, progres-
sing to vasoplegic refractory shock, requiring hemodynamic support.
The presence of polyserositis and elevation of acute phase reactants was
also described. In relation to cardiac compromise, an elevation of car-
diac enzymes was found, and in one patient, echocardiographic changes
as echo-bright coronary arteries on day 1 and then coronary aneurysm
at day 7 were described. Two of the children were positive for SARS-
CoV-2 (1 post-mortem), and four had an epidemiological link with re-
latives diagnosed with COVID-19.

Belhadjer et al. [41], described 35 children with acute heart failure
and SARS-CoV-2. Of these, several patients showed clinical signs sug-
gestive of atypical KD. On the other hand, Toubiana et al. [42], ana-
lyzed 21 cases of children with COVI-19 associated with KD. Half of
patients exhibited cardiac involvement due to pericardial effusion,
myocarditis, and cardiac arrhythmias, which reinforces the high
number of patients with cardiac compromise.

A separate study in Italy, showed a 30-fold increased incidence of
KD. Children exhibit a higher rate of cardiac involvement and features
of MAS than those patients with similar manifestations prior to the
beginning of this pandemic [39]. Jones et al. [37], described a pre-
viously healthy 6-month-old patient in whom the medical examination
documented polymorphous rash, conjunctivitis, and changes in the oral
mucosa after two days of fever together with a positive RT-PCR test for
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SARS-CoV-2. Additionally, Rivera-Figueroa et al. [40], reported the
case of a 5-year-old boy with 8 days of fever, presenting with er-
ythematous lips, non-exudative conjunctivitis, bilateral cervical lym-
phadenopathy, diarrhea, abdominal pain and dysuria were observed.
The increase rate of KD in times of pandemic is striking. Beside the
relationship between SARS-CoV-2 infection and CSS mentioned above,
the mechanisms and risk factors by which KD in children with COVID-
19 is increasing remains to be elucidated.

10.3. Guillain-Barré syndrome

GBS is an acute inflammatory immune-mediated poly-
radiculoneuropathy presenting typically with tingling, progressive
weakness, autonomic dysfunction and pain. Immune injury specifically
takes place at the myelin sheath and related Schwann-cell components
in acute inflammatory demyelinating polyneuropathy, whereas in acute
motor axonal neuropathy, the membranes on the nerve axon (the ax-
olemma) are the primary target for immune-related injury [187].

The association between SARS-CoV-2 and autoimmune neurological
diseases such as GBS has become relevant (Table 2). Alberti et al. [19],
reported the case of a 71-year-old male patient who was admitted to the
hospital secondary to paresthesia, progressive weakness, areflexia, and
protein elevation in cerebrospinal fluid, fulfilling criteria for GBS di-
agnosis. Weeks before the diagnosis, the patient had experienced fever,
and during hospitalization, the patient presented with dyspnea and
severe hypoxia. Chest tomography showed multiple bilateral ground
glass opacities and consolidations, all typical of COVID-19 pneumonia.
However, confirmation of SARS-CoV-2 was not done.

Five additional cases of GBS following SARS-CoV-2 infection were
reported by Toscano et al. [20]. The patients showed neurological
symptoms between 5 and 10 days after onset of the viral disease. Four
of them were successfully treated with IVIG and one received plasma
exchange. However, a woman with COVID-19 developed a severe form
of GBS that did not respond to IVIG [27]. This may suggest that select
susceptible patients infected with SARS-CoV-2 may develop peripheral
neurological diseases as reported for other viruses such as Zika, Dengue,
or Cytomegalovirus [187]. At present, the GBS variant mainly asso-
ciated with SARS-CoV-2, is the demyelinating one. The case reports
presented in Table 2 indicate the possible causal relationship between
SARS-CoV-2 infection and GBS through an autoimmune cross-reactivity
mechanism.

Dinkin et al. [28], documented 2 patients with COVID-19 and ocular
motor palsy. Miller Fisher syndrome and oculomotor nerve inflamma-
tion were suspected in one patient, while the second patient exhibited a

sixth cranial nerve compromise. These cases support the association
between COVID-19 and the appearance of inflammatory neuropathies
similar to GBS. It has been observed that patients with lymphopenia,
hyposmia and hypogeusia have a higher risk of developing these neu-
rological manifestations [28]. Therefore, an autoimmune phenomenon
triggered by COVID-19 should not be ruled out. Inflammation may
compromise the integrity of the blood-brain barrier, and this facilitates
the affectation of nerve structures [188]. On the other hand, macro-
phages expressing ACE2 receptors can prolong inflammation in the
nervous tissue [189].

11. Concluding remarks

COVID-19 is a new disease that rapidly became a dominant global
health issue in which scientific interdisciplinary and collaborative work
has become more important than ever. Viruses are known to trigger
several autoinflammatory and ADs, and many immunological ab-
normalities described so far in COVID-19 patients can be observed in
auto-inflammatory/autoimmune conditions. Our current understanding
of the COVID-19 pathogenic mechanisms is very limited. However, it is
evident that the disease may evolve in four overlapping phases. An
initial viral phase that may well be asymptomatic or mild in about 80%
of patients. It is not known why such a large proportion of patients have
mild or asymptomatic disease. Then host-virus interactions take place
which dictate the outcome for the subsequent phases of the disease. The
second phase corresponds to a hyperresponsiveness of the immune
system. The third phase is characterized by a state of hypercoagul-
ability. Lastly, in the fourth phase organ damage occurs and its related
to the organ- and cell-specific expression of ACE2 receptor, the intensity
of the inflammatory response (i.e., CSS) and the hypercoagulable state.
Given this characterization, it is worth asking “is COVID-19 just an
infectious disease or something else?” [190] or, are autoinflammatory
and autoimmune conditions at the crossroad of COVID-19? It also raises
the issue of whether other ADs may be caused by a coronavirus.

To date, there are no established evidence-based therapies for this
new disease; however, the number of reports showing beneficial effects
by immunomodulatory drugs is increasing. Some of these drugs possess
both anti-viral and immunomodulatory effects [191]. Monoclonal an-
tibodies (e.g., tocilizumab targeting IL-6R and anakinra targeting IL-1β)
are currently studied in the treatment of COVID-19. Similarly, colchi-
cine, an “old drug” used in auto-inflammatory disorders, is also under
evaluation, suggesting that modulation and control of inflammation is
crucial, and that there is a point during the course of the disease when
immunosuppressive therapy maybe a prudent course for the therapy of

Fig. 4. Clinical differences between classic KD (left) and KD associated with SARS-CoV-2 (right). Cardiac involvement is a critical clinical feature in patients
with KD or Kawasaki-like conditions associated with SARS-CoV-2, also referred as pediatric inflammatory syndrome temporally related to COVID-19. Adapted from
Refs. [36–39].
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this new pathological condition [192]. Clearly, we are not fully in-
formed and therapeutic strategies remain in their infancy [193].

Current studies on SARS-CoV-2 vaccination should consider the
topics we have raised here. As discussed above, bystander activation
and molecular mimicry could be associated with the development of
autoimmunity while antibody-dependent enhancement may be asso-
ciated with severity of disease. In addition, personalized approaches
including genotypification of risk genes and evaluation of risk factors
for autoimmunity (i.e., familial autoimmunity) must be also considered
in the current development of vaccines [194].
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